Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Researchers develop new graphene nanochannel water filters

The channels between graphene sheets are horizontal, which is not great for applications like water filtration. But researchers from Brown University have shown a way to flip those channels to make them vertical in relation to the sheets, which is an ideal filtration orientation.

CREDIT
Hurt lab / Brown University
The channels between graphene sheets are horizontal, which is not great for applications like water filtration. But researchers from Brown University have shown a way to flip those channels to make them vertical in relation to the sheets, which is an ideal filtration orientation. CREDIT Hurt lab / Brown University

Abstract:
When sheets of two-dimensional nanomaterials like graphene are stacked on top of each other, tiny gaps form between the sheets that have a wide variety of potential uses. In research published in the journal Nature Communications, a team of Brown University researchers has found a way to orient those gaps, called nanochannels, in a way that makes them more useful for filtering water and other liquids of nanoscale contaminants.

Researchers develop new graphene nanochannel water filters

Providence, RI | Posted on January 22nd, 2021

"In the last decade, a whole field has sprung up to study these spaces that form between 2-D nanomaterials," said Robert Hurt, a professor in Brown's School of Engineering and coauthor of the research. "You can grow things in there, you can store things in there, and there's this emerging field of nanofluidics where you're using those channels to filter out some molecules while letting others go through."

There's a problem, however, with using these nanochannels for filtration, and it has to do with the way those channels are oriented. Like a notebook made from stacked sheets of paper, graphene stacks are thin in the vertical direction compared to their horizontal length and width. That means that the channels between the sheets are likewise oriented horizontally. That's not ideal for filtration, because liquid has to travel a relatively long way to get from one end of a channel to the other. It would be better if the channels were perpendicular to the orientation of the sheets. In that case, liquid would only need to traverse the relatively thin vertical height of the stack rather than the much longer length and width.

But until now, Hurt says, no one had come up with a good way to make vertically oriented graphene nanochannels. That is until Muchun Liu, a former postdoctoral researcher in Hurt's lab, figured out a novel way to do it.

Liu's method involves stacking graphene sheets on an elastic substrate, which is placed under tension to stretch it out. After the sheets are deposited, the tension on the substrate is released, which allows it to contract. When that happens, the graphene assemblage on top wrinkles into sharp peaks and valleys.

"When you start wrinkling the graphene, you're tilting the sheets and the channels out of plane," said Liu, who is now a researcher at Massachusetts Institute of Technology. "If you wrinkle it a lot, the channels end up being aligned almost vertically."

Once the channels are nearly vertical, the assemblage is encased in epoxy, and the tops and bottoms are then trimmed away, which opens the channels all the way through the material. The researchers have dubbed the assemblages VAGMEs (vertically aligned graphene membranes).

"What we end up with is a membrane with these short and very narrow channels through which only very small molecules can pass," Hurt said. "So, for example, water can pass through, but organic contaminants or some metal ions would be too large to go through. So you could filter those out."

Proof-of-concept testing demonstrated that water vapor could pass easily through a VAGME, while hexane -- a larger organic molecule -- was filtered out. The researchers plan to continue developing the technology, with an eye toward potential industrial or household filtering applications.

###

The research was supported by the National Institute of Environmental Health Sciences Superfund Research Program (P42 ES013660).

####

For more information, please click here

Contacts:
Kevin Stacey

401-863-3766

@brownuniversity

Copyright © Brown University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

RELATED JOURNAL ARTICLE:

Related News Press

News and information

Brought into line: FAU physicists control the flow of electron pulses through a nanostructure channel September 24th, 2021

Nanocellulose decorated with proteins is suitable for 3D cell culturing September 24th, 2021

Development of dendritic-network-implementable artificial neurofiber transistors: Transistors with a fibrous architecture similar to those of neurons are capable of forming artificial neural networks. Fibrous networks can be used in smart wearable devices and robots September 24th, 2021

Researchers use breakthrough method to answer key question about electron states September 24th, 2021

Graphene/ Graphite

National 2D materials research center wins NSF funding: Boise State joins Penn State, Rice for Phase II expansion of ATOMIC center August 20th, 2021

National 2D materials research center wins NSF funding: Boise State joins Penn State, Rice for Phase II expansion of ATOMIC center August 20th, 2021

From anti-icing coatings to protection of containers with flammable liquids: heating films with graphene nanotubes enter the market August 20th, 2021

Graphene nanotubes revolutionize touch screen use for prosthetic hands August 3rd, 2021

Govt.-Legislation/Regulation/Funding/Policy

UTA project aims to extend life of concrete, cement by adding nanoscale wood fibers: Wood fibers key to sustainable concrete, cement September 24th, 2021

A simple way to get complex semiconductors to assemble themselves: Much like crystallizing rock candy from sugar syrup, the new method grows 2D perovskites precisely layered with other 2D materials to produce crystals with a wide range of electronic properties September 17th, 2021

Scientists demonstrate pathway to forerunner of nanotubes that could lead to widespread industrial fabrication September 17th, 2021

Stretching the capacity of flexible energy storage September 10th, 2021

Possible Futures

Micro-scale opto-thermo-mechanical actuation in the dry adhesive regime Peer-Reviewed Publication September 24th, 2021

MXene-GaN van der Waals metal-semiconductor junctions for high performance photodetection September 24th, 2021

Nanocellulose decorated with proteins is suitable for 3D cell culturing September 24th, 2021

Development of dendritic-network-implementable artificial neurofiber transistors: Transistors with a fibrous architecture similar to those of neurons are capable of forming artificial neural networks. Fibrous networks can be used in smart wearable devices and robots September 24th, 2021

Discoveries

Fabricating MgB2 superconductors using spark plasma sintering and pulse magnetization: New research suggests that highly dense MgB2 bulks have improved mechanical and superconducting properties September 24th, 2021

Brought into line: FAU physicists control the flow of electron pulses through a nanostructure channel September 24th, 2021

Nanocellulose decorated with proteins is suitable for 3D cell culturing September 24th, 2021

Researchers use breakthrough method to answer key question about electron states September 24th, 2021

Announcements

Brought into line: FAU physicists control the flow of electron pulses through a nanostructure channel September 24th, 2021

Nanocellulose decorated with proteins is suitable for 3D cell culturing September 24th, 2021

Development of dendritic-network-implementable artificial neurofiber transistors: Transistors with a fibrous architecture similar to those of neurons are capable of forming artificial neural networks. Fibrous networks can be used in smart wearable devices and robots September 24th, 2021

Researchers use breakthrough method to answer key question about electron states September 24th, 2021

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Micro-scale opto-thermo-mechanical actuation in the dry adhesive regime Peer-Reviewed Publication September 24th, 2021

MXene-GaN van der Waals metal-semiconductor junctions for high performance photodetection September 24th, 2021

Fabricating MgB2 superconductors using spark plasma sintering and pulse magnetization: New research suggests that highly dense MgB2 bulks have improved mechanical and superconducting properties September 24th, 2021

Brought into line: FAU physicists control the flow of electron pulses through a nanostructure channel September 24th, 2021

Water

Water as a metal July 30th, 2021

Controlling the nanoscale structure of membranes is key for clean water, researchers find January 1st, 2021

Ultra-fast gas flows through tiniest holes in 2D membranes: Researchers from the National Graphene Institute at the University of Manchester and the University of Pennsylvania identify ultra-fast gas flows through atomic-scale apertures in 2D membrane and validate a century-old e December 18th, 2020

Industrial-strength brine, meet your kryptonite: Boron nitride coating is key ingredient in hypersaline desalination technology November 6th, 2020

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project