Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Pioneering new technique could revolutionise super-resolution imaging systems

Abstract:
Scientists have developed a pioneering new technique that could revolutionise the accuracy, precision and clarity of super-resolution imaging systems.

Pioneering new technique could revolutionise super-resolution imaging systems

Exeter, UK | Posted on January 22nd, 2021

A team of scientists, led by Dr Christian Soeller from the University of Exeter's Living Systems Institute, which champions interdisciplinary research and is a hub for new high-resolution measurement techniques, has developed a new way to improve the very fine, molecular imaging of biological samples.

The new method builds upon the success of an existing super-resolution imaging technique called DNA-PAINT (Point Accumulation for Imaging in Nanoscale Topography) - where molecules in a cell are labelled with marker molecules that are attached to single DNA strands.

Matching DNA strands are then also labelled with a florescent chemical compound and introduced in solution - when they bind the marker molecules, it creates a 'blinking effect' that makes imaging possible.

However, DNA-PAINT has a number of drawbacks in its current form, which limit the applicability and performance of the technology when imaging biological cells and tissues.

In response, the research team have developed a new technique, called Repeat DNA-Paint, which is capable of supressing background noise and nonspecific signals, as well as decreasing the time taken for the sampling process.

Crucially, using Repeat DNA-PAINT is straightforward and does not carry any known drawbacks, it is routinely applicable, consolidating the role of DNA-PAINT as one of the most robust and versatile molecular resolution imaging methods.

The study is published in Nature Communications on 21st January 2021 .

Dr Soeller, lead author of the study and who is a biophysicist at the Living Systems Institute said: "We can now see molecular detail with light microscopy in a way that a few years ago seemed out of reach. This allows us to directly see how molecules orchestrate the intricate biological functions that enable life in both health and disease".

The research was enabled by colleagues from physics, biology, medicine, mathematics and chemistry working together across traditional discipline boundaries. Dr Lorenzo Di Michele, co-author from Imperial College London said: "This work is a clear example of how quantitative biophysical techniques and concepts can really improve our ability to study biological systems".

####

For more information, please click here

Contacts:
Duncan Sandes

44-013-927-22391

@uniofexeter

Copyright © University of Exeter

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

RELATED JOURNAL ARTICLE:

Related News Press

News and information

Princeton-led team discovers unexpected quantum behavior in kagome lattice:Experiments suggest evidence for novel patterns of electronic charge distribution in a kagome material whose handedness can be manipulated with a magnetic field June 18th, 2021

Atomic-scale tailoring of graphene approaches macroscopic world June 18th, 2021

Compact quantum computer for server centers: Researchers build smallest quantum computer yet based on industry standards June 18th, 2021

Changing a 2D material's symmetry can unlock its promise: Jian Shi Research Group engineers material into promising optoelectronic June 18th, 2021

'Nanodecoy' therapy binds and neutralizes SARS-CoV-2 virus June 18th, 2021

Imaging

Atomic-scale tailoring of graphene approaches macroscopic world June 18th, 2021

Possible Futures

AI app could help diagnose HIV more accurately: Pioneering technology developed by UCL (University College London) and Africa Health Research Institute (AHRI) researchers could transform the ability to accurately interpret HIV test results, particularly in low- and middle-income June 18th, 2021

Atomic-scale tailoring of graphene approaches macroscopic world June 18th, 2021

Compact quantum computer for server centers: Researchers build smallest quantum computer yet based on industry standards June 18th, 2021

Changing a 2D material's symmetry can unlock its promise: Jian Shi Research Group engineers material into promising optoelectronic June 18th, 2021

Discoveries

AI app could help diagnose HIV more accurately: Pioneering technology developed by UCL (University College London) and Africa Health Research Institute (AHRI) researchers could transform the ability to accurately interpret HIV test results, particularly in low- and middle-income June 18th, 2021

Atomic-scale tailoring of graphene approaches macroscopic world June 18th, 2021

Compact quantum computer for server centers: Researchers build smallest quantum computer yet based on industry standards June 18th, 2021

Changing a 2D material's symmetry can unlock its promise: Jian Shi Research Group engineers material into promising optoelectronic June 18th, 2021

Announcements

Proliferation of electric vehicles based on high-performance, low-cost sodium-ion battery:A large-capacity anode material is developed for sodium-ion batteries by using low-cost silicone-based oil. This process, if commercialized, is expected to significantly reduce manufacturing June 18th, 2021

AI app could help diagnose HIV more accurately: Pioneering technology developed by UCL (University College London) and Africa Health Research Institute (AHRI) researchers could transform the ability to accurately interpret HIV test results, particularly in low- and middle-income June 18th, 2021

Compact quantum computer for server centers: Researchers build smallest quantum computer yet based on industry standards June 18th, 2021

Changing a 2D material's symmetry can unlock its promise: Jian Shi Research Group engineers material into promising optoelectronic June 18th, 2021

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Princeton-led team discovers unexpected quantum behavior in kagome lattice:Experiments suggest evidence for novel patterns of electronic charge distribution in a kagome material whose handedness can be manipulated with a magnetic field June 18th, 2021

AI app could help diagnose HIV more accurately: Pioneering technology developed by UCL (University College London) and Africa Health Research Institute (AHRI) researchers could transform the ability to accurately interpret HIV test results, particularly in low- and middle-income June 18th, 2021

Compact quantum computer for server centers: Researchers build smallest quantum computer yet based on industry standards June 18th, 2021

Changing a 2D material's symmetry can unlock its promise: Jian Shi Research Group engineers material into promising optoelectronic June 18th, 2021

Photonics/Optics/Lasers

Graphene drum: Researchers develop new phonon laser design June 18th, 2021

Researchers tame silicon to interact with light for next-generation microelectronics June 11th, 2021

Luminaries: Steven DenBaars and John Bowers receive top recognition at Compound Semiconductor Week conference May 21st, 2021

Emergence of a new heteronanostructure library May 14th, 2021

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project