Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Adaptive optics with cascading corrective elements: A cascaded dual deformable phase plate wavefront modulator enables direct AO integration with existing microscopes--doubling the aberration correction range and greatly improving image quality

Cascading optofluidic phase modulators for performance enhancement in refractive adaptive optics, doi 10.1117/1.AP.2.6.066005

CREDIT
SPIE
Cascading optofluidic phase modulators for performance enhancement in refractive adaptive optics, doi 10.1117/1.AP.2.6.066005 CREDIT SPIE

Abstract:
Microscopy is the workhorse of contemporary life science research, enabling morphological and chemical inspection of living tissue with ever-increasing spatial and temporal resolution. Even though modern microscopes are genuine marvels of engineering, minute deviations from ideal imaging conditions will still lead to optical aberrations that rapidly degrade imaging quality. A mismatch between the refractive indices of the sample and its immersion medium, deviations in the thickness of sample holders or cover glasses, the effects of aging on the instrument--such deviations can manifest themselves in the form of spherical aberration and focusing errors. Also, particularly for deep tissue imaging, an essential tool in neurobiology research, an inhomogeneous refractive index of the sample and its complex surface shape can lead to additional higher order aberrations.

Adaptive optics with cascading corrective elements: A cascaded dual deformable phase plate wavefront modulator enables direct AO integration with existing microscopes--doubling the aberration correction range and greatly improving image quality

Bellingham, WA | Posted on January 22nd, 2021

Adaptive optics microscopy

Adaptive optics (AO), an image correction technique first used in astronomical telescopes for compensating the effects of atmospheric turbulence, is the state-of-the-art method to dynamically correct for sample and system-induced aberrations in a microscopy system. A typical AO system features an active, shapeshifting optical element that can reproduce the inverse of the wavefront error present in the system. Commonly taking the form of either a deformable mirror or a liquid crystal spatial light modulator, the limitations of this element define the quality of achievable aberration correction and thus the widespread applicability of AO microscopy.

As reported in Advanced Photonics, researchers from the University of Freiburg, Germany, have made a significant advance in AO microscopy through the demonstration of a new AO module comprising two deformable phase plates (DPPs). In contrast to deformable mirrors, the DPP system is a wavefront modulator operating in transmission, enabling direct AO integration with existing microscopes. In this AO configuration, similar to hi-fidelity loudspeakers with separate woofer and tweeter units, one of the optical modulators is optimized for low-spatial frequency aberrations, while the second is used for high-frequency correction.

Cascading modulation

A major challenge for an AO system with multiple phase modulators is how to place them on optically equivalent (conjugate) positions, often requiring multiple additional optical components to relay the image until it reaches the detector. Therefore, configuring even two modulators in an AO system is very challenging. Since the DPPs are <1 mm in thickness, cascading two or more modulators within acceptable proximity becomes substantially more practical. The Freiburg team also developed a new method to optimally control multiple phase modulators regardless of their individual specifications, potentially enabling cascading of many more devices for increased range and fidelity.

To demonstrate its performance, the team integrated their new AO system into a custom-built fluorescence microscope, where sample-induced aberrations are iteratively estimated without a wavefront sensor. Imaging experiments on synthetic samples demonstrated that the new AO system not only doubles the aberration correction range, but also greatly improves correction quality. The work demonstrates that more advanced aberration correction schemes, such as multi-conjugate adaptive optics, can be implemented as easily and with new and more advanced control methods.

####

For more information, please click here

Contacts:
Daneet Steffens

360-685-5478

@SPIEtweets

Copyright © SPIE

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Read the original research article by Pouya Rajaeipour et al., "Cascading optofluidic phase modulators for performance enhancement in refractive adaptive optics," Adv. Photonics 2(6), 066005, doi 10.1117/1.AP.2.6.066005:

Related News Press

News and information

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Imaging

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

First direct imaging of small noble gas clusters at room temperature: Novel opportunities in quantum technology and condensed matter physics opened by noble gas atoms confined between graphene layers January 12th, 2024

The USTC realizes In situ electron paramagnetic resonance spectroscopy using single nanodiamond sensors November 3rd, 2023

Observation of left and right at nanoscale with optical force October 6th, 2023

Possible Futures

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

With VECSELs towards the quantum internet Fraunhofer: IAF achieves record output power with VECSEL for quantum frequency converters April 5th, 2024

Discoveries

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Announcements

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Tools

First direct imaging of small noble gas clusters at room temperature: Novel opportunities in quantum technology and condensed matter physics opened by noble gas atoms confined between graphene layers January 12th, 2024

New laser setup probes metamaterial structures with ultrafast pulses: The technique could speed up the development of acoustic lenses, impact-resistant films, and other futuristic materials November 17th, 2023

Ferroelectrically modulate the Fermi level of graphene oxide to enhance SERS response November 3rd, 2023

The USTC realizes In situ electron paramagnetic resonance spectroscopy using single nanodiamond sensors November 3rd, 2023

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project