Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Bringing Atoms to a Standstill: NIST Miniaturizes Laser Cooling January

Credit: NIST
Illustration of a new optical system to miniaturize the laser cooling of atoms, a key step towards cooling atoms on a microchip. A beam of laser light is launched from a photonic integrated circuit (PIC), aided by an element called an extreme mode converter (EMC) that greatly expands the beam. The beam then strikes a carefully engineered, ultrathin film known as a metasurface (MS), which is studded with tiny pillars that further expand and shape the beam. The beam is diffracted from a grating chip to form multiple overlapping laser beams inside a vacuum chamber. The combination of laser beams and a magnetic field efficiently cools and traps a large collection of gaseous atoms in a magneto-optical trap (MOT).
Credit: NIST Illustration of a new optical system to miniaturize the laser cooling of atoms, a key step towards cooling atoms on a microchip. A beam of laser light is launched from a photonic integrated circuit (PIC), aided by an element called an extreme mode converter (EMC) that greatly expands the beam. The beam then strikes a carefully engineered, ultrathin film known as a metasurface (MS), which is studded with tiny pillars that further expand and shape the beam. The beam is diffracted from a grating chip to form multiple overlapping laser beams inside a vacuum chamber. The combination of laser beams and a magnetic field efficiently cools and traps a large collection of gaseous atoms in a magneto-optical trap (MOT).

Abstract:
It’s cool to be small. Scientists at the National Institute of Standards and Technology (NIST) have miniaturized the optical components required to cool atoms down to a few thousandths of a degree above absolute zero, the first step in employing them on microchips to drive a new generation of super-accurate atomic clocks, enable navigation without GPS, and simulate quantum systems.

Bringing Atoms to a Standstill: NIST Miniaturizes Laser Cooling January

Gaithersburg, MD and Boulder, CO | Posted on January 21st, 2021

Cooling atoms is equivalent to slowing them down, which makes them a lot easier to study. At room temperature, atoms whiz through the air at nearly the speed of sound, some 343 meters per second. The rapid, randomly moving atoms have only fleeting interactions with other particles, and their motion can make it difficult to measure transitions between atomic energy levels. When atoms slow to a crawl — about 0.1 meters per second — researchers can measure the particles’ energy transitions and other quantum properties accurately enough to use as reference standards in a myriad of navigation and other devices.

For more than two decades, scientists have cooled atoms by bombarding them with laser light, a feat for which NIST physicist Bill Phillips shared the 1997 Nobel Prize in physics. Although laser light would ordinarily energize atoms, causing them to move faster, if the frequency and other properties of the light are chosen carefully, the opposite happens. Upon striking the atoms, the laser photons reduce the atoms’ momentum until they are moving slowly enough to be trapped by a magnetic field.

But to prepare the laser light so that it has the properties to cool atoms typically requires an optical assembly as big as a dining-room table. That’s a problem because it limits the use of these ultracold atoms outside the laboratory, where they could become a key element of highly accurate navigation sensors, magnetometers and quantum simulations.

Now NIST researcher William McGehee and his colleagues have devised a compact optical platform, only about 15 centimeters (5.9 inches) long, that cools and traps gaseous atoms in a 1-centimeter-wide region. Although other miniature cooling systems have been built, this is the first one that relies solely on flat, or planar, optics, which are easy to mass produce.

“This is important as it demonstrates a pathway for making real devices and not just small versions of laboratory experiments,” said McGehee. The new optical system, while still about 10 times too big to fit on a microchip, is a key step toward employing ultracold atoms in a host of compact, chip-based navigation and quantum devices outside a laboratory setting. Researchers from the Joint Quantum Institute, a collaboration between NIST and the University of Maryland in College Park, along with scientists from the University of Maryland’s Institute for Research in Electronics and Applied Physics, also contributed to the study.

The apparatus, described online in the New Journal of Physics, consists of three optical elements. First, light is launched from an optical integrated circuit using a device called an extreme mode converter. The converter enlarges the narrow laser beam, initially about 500 nanometers (nm) in diameter (about five thousandths the thickness of a human hair), to 280 times that width. The enlarged beam then strikes a carefully engineered, ultrathin film known as a “metasurface” that’s studded with tiny pillars, about 600 nm in length and 100 nm wide.

The nanopillars act to further widen the laser beam by another factor of 100. The dramatic widening is necessary for the beam to efficiently interact with and cool a large collection of atoms. Moreover, by accomplishing that feat within a small region of space, the metasurface miniaturizes the cooling process.

The metasurface reshapes the light in two other important ways, simultaneously altering the intensity and polarization (direction of vibration) of the light waves. Ordinarily, the intensity follows a bell-shaped curve, in which the light is brightest at the center of the beam, with a gradual falloff on either side. The NIST researchers designed the nanopillars so that the tiny structures modify the intensity, creating a beam that has a uniform brightness across its entire width. The uniform brightness allows more efficient use of the available light. Polarization of the light is also critical for laser cooling.

The expanding, reshaped beam then strikes a diffraction grating that splits the single beam into three pairs of equal and oppositely directed beams. Combined with an applied magnetic field, the four beams, pushing on the atoms in opposing directions, serve to trap the cooled atoms.

Each component of the optical system — the converter, the metasurface and the grating — had been developed at NIST but was in operation at separate laboratories on the two NIST campuses, in Gaithersburg, Maryland and Boulder, Colorado. McGehee and his team brought the disparate components together to build the new system.

“That’s the fun part of this story,” he said. “I knew all the NIST scientists who had independently worked on these different components, and I realized the elements could be put together to create a miniaturized laser cooling system.”

Although the optical system will have to be 10 times smaller to laser-cool atoms on a chip, the experiment “is proof of principle that it can be done,” McGehee added.

“Ultimately, making the light preparation smaller and less complicated will enable laser-cooling based technologies to exist outside of laboratories,” he said.

####

For more information, please click here

Contacts:
MEDIA CONTACT
Ben P. Stein

(301) 975-2763

TECHNICAL CONTACT
William McGehee

(303) 497-4779

Copyright © National Institute of Standards and Technology (NIST)

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Paper: William McGehee, Wenqi Zhu, Daniel Barker, Daron A. Westly, Alexander Yulaev, Nikolai Klimov, Amit Agrawal, Stephen Eckel, Vladimir A. Aksyuk and Jabez McClelland. Magneto-optical trapping using planar optics. New Journal of Physics. Accepted manuscript available online Jan. 18, 2021. DOI: 10.1088/1367-2630/abdce3:

Related News Press

News and information

Built to last: New copolymer binder to extend the life of lithium ion batteries: Scientists develop a novel binder material that protects the graphite anode of Li-ion batteries from degradation even after 1700 cycles March 5th, 2021

A COSMIC approach to nanoscale science: Instrument at Berkeley Lab's Advanced Light Source achieves world-leading resolution of nanomaterials March 5th, 2021

Light in concert with force reveals how materials become harder when illuminated: When indented by a probe in darkness, wafers of some semiconductors are putty-like. When illuminated by light whose wavelength matches the band gap, they become hard, as electrons and holes freed by March 5th, 2021

Taking 2D materials for a spin: Scientists at the University of Tsukuba and the Institute of High Pressure Physics fabricate a novel molybdenum disulfide transistor and create an image of the spins of the electrons passing through which may open the way for new spintronic compute March 5th, 2021

Light-emitting tattoo engineered for the first time: Scientists at UCL and the IIT -Istituto Italiano di Tecnologia (Italian Institute of Technology) have created a temporary tattoo with light-emitting technology used in TV and smartphone screens, paving the way for a new type of March 4th, 2021

Laboratories

A COSMIC approach to nanoscale science: Instrument at Berkeley Lab's Advanced Light Source achieves world-leading resolution of nanomaterials March 5th, 2021

Quantum quirk yields giant magnetic effect, where none should exist: Study opens window into the landscape of extreme topological matter March 1st, 2021

Discovery could lead to self-propelled robots February 2nd, 2021

Squeezing a rock-star material could make it stable enough for solar cells: A promising lead halide perovskite is great at converting sunlight to electricity, but it breaks down at room temperature; now scientists have discovered how to stabilize it with pressure from a diamond a January 22nd, 2021

Quantum Physics

Quantum quirk yields giant magnetic effect, where none should exist: Study opens window into the landscape of extreme topological matter March 1st, 2021

Atomic nuclei in the quantum swing: The extremely precise control of nuclear excitations opens up possibilities of ultra-precise atomic clocks and powerful nuclear batteries February 19th, 2021

Physics

Atomic nuclei in the quantum swing: The extremely precise control of nuclear excitations opens up possibilities of ultra-precise atomic clocks and powerful nuclear batteries February 19th, 2021

D-Wave demonstrates performance advantage in quantum simulation of exotic magnetism: Fully-programmable annealing quantum computer demonstrates 3 million times speed-up over classical CPU in a practical application February 19th, 2021

Nanofabrication

Making 3-D Nanosuperconductors with DNA: Complex 3-D nanoscale architectures based on DNA self-assembly can conduct electricity without resistance and may provide a platform for fabricating quantum computing and sensing devices November 10th, 2020

Landmark discovery could improve Army lasers, precision sensors September 29th, 2020

Machine learning peeks into nano-aquariums August 31st, 2020

O-FIB: Far-field-induced near-field breakdown for direct nanowriting in an atmospheric environment March 20th, 2020

Govt.-Legislation/Regulation/Funding/Policy

A COSMIC approach to nanoscale science: Instrument at Berkeley Lab's Advanced Light Source achieves world-leading resolution of nanomaterials March 5th, 2021

Arrowhead Pharmaceuticals Files IND to Begin Phase 2b Study of ARO-APOC3 in Patients with Severe Hypertriglyceridemia March 2nd, 2021

Quantum quirk yields giant magnetic effect, where none should exist: Study opens window into the landscape of extreme topological matter March 1st, 2021

Bioinformatics tool accurately tracks synthetic: DNA Computer scientists show benefits of bioinformatics with PlasmidHawk February 26th, 2021

Possible Futures

Built to last: New copolymer binder to extend the life of lithium ion batteries: Scientists develop a novel binder material that protects the graphite anode of Li-ion batteries from degradation even after 1700 cycles March 5th, 2021

A COSMIC approach to nanoscale science: Instrument at Berkeley Lab's Advanced Light Source achieves world-leading resolution of nanomaterials March 5th, 2021

Light in concert with force reveals how materials become harder when illuminated: When indented by a probe in darkness, wafers of some semiconductors are putty-like. When illuminated by light whose wavelength matches the band gap, they become hard, as electrons and holes freed by March 5th, 2021

Taking 2D materials for a spin: Scientists at the University of Tsukuba and the Institute of High Pressure Physics fabricate a novel molybdenum disulfide transistor and create an image of the spins of the electrons passing through which may open the way for new spintronic compute March 5th, 2021

Chip Technology

Light in concert with force reveals how materials become harder when illuminated: When indented by a probe in darkness, wafers of some semiconductors are putty-like. When illuminated by light whose wavelength matches the band gap, they become hard, as electrons and holes freed by March 5th, 2021

CEA-Leti Announces 16 Papers to Be Presented At Photonics West 2021 and a Virtual Workshop on March 25 March 3rd, 2021

Quantum quirk yields giant magnetic effect, where none should exist: Study opens window into the landscape of extreme topological matter March 1st, 2021

Engineering the boundary between 2D and 3D materials: Cutting-edge microscope helps reveal ways to control the electronic properties of atomically thin materials February 26th, 2021

Optical computing/Photonic computing

New study investigates photonics for artificial intelligence and neuromorphic computing February 1st, 2021

USTC develops ultrahigh-performance plasmonic metal-oxide materials January 11th, 2021

Perfect transmission through barrier using sound: New study experimentally proved for the first time a century-old quantum theory that relativistic particles can pass through a barrier with 100% transmission December 29th, 2020

Experiment takes 'snapshots' of light, stops light, uses light to change properties of matter December 25th, 2020

Discoveries

Built to last: New copolymer binder to extend the life of lithium ion batteries: Scientists develop a novel binder material that protects the graphite anode of Li-ion batteries from degradation even after 1700 cycles March 5th, 2021

A COSMIC approach to nanoscale science: Instrument at Berkeley Lab's Advanced Light Source achieves world-leading resolution of nanomaterials March 5th, 2021

Light in concert with force reveals how materials become harder when illuminated: When indented by a probe in darkness, wafers of some semiconductors are putty-like. When illuminated by light whose wavelength matches the band gap, they become hard, as electrons and holes freed by March 5th, 2021

Taking 2D materials for a spin: Scientists at the University of Tsukuba and the Institute of High Pressure Physics fabricate a novel molybdenum disulfide transistor and create an image of the spins of the electrons passing through which may open the way for new spintronic compute March 5th, 2021

Materials/Metamaterials

Light in concert with force reveals how materials become harder when illuminated: When indented by a probe in darkness, wafers of some semiconductors are putty-like. When illuminated by light whose wavelength matches the band gap, they become hard, as electrons and holes freed by March 5th, 2021

Expanding the freedom of design: powder coating on FRP thanks to conductive gelcoats with graphene nanotubes March 3rd, 2021

Quantum quirk yields giant magnetic effect, where none should exist: Study opens window into the landscape of extreme topological matter March 1st, 2021

Changing the silkworm's diet to spin stronger silk February 26th, 2021

Announcements

Built to last: New copolymer binder to extend the life of lithium ion batteries: Scientists develop a novel binder material that protects the graphite anode of Li-ion batteries from degradation even after 1700 cycles March 5th, 2021

A COSMIC approach to nanoscale science: Instrument at Berkeley Lab's Advanced Light Source achieves world-leading resolution of nanomaterials March 5th, 2021

Light in concert with force reveals how materials become harder when illuminated: When indented by a probe in darkness, wafers of some semiconductors are putty-like. When illuminated by light whose wavelength matches the band gap, they become hard, as electrons and holes freed by March 5th, 2021

Taking 2D materials for a spin: Scientists at the University of Tsukuba and the Institute of High Pressure Physics fabricate a novel molybdenum disulfide transistor and create an image of the spins of the electrons passing through which may open the way for new spintronic compute March 5th, 2021

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Built to last: New copolymer binder to extend the life of lithium ion batteries: Scientists develop a novel binder material that protects the graphite anode of Li-ion batteries from degradation even after 1700 cycles March 5th, 2021

A COSMIC approach to nanoscale science: Instrument at Berkeley Lab's Advanced Light Source achieves world-leading resolution of nanomaterials March 5th, 2021

Light in concert with force reveals how materials become harder when illuminated: When indented by a probe in darkness, wafers of some semiconductors are putty-like. When illuminated by light whose wavelength matches the band gap, they become hard, as electrons and holes freed by March 5th, 2021

Taking 2D materials for a spin: Scientists at the University of Tsukuba and the Institute of High Pressure Physics fabricate a novel molybdenum disulfide transistor and create an image of the spins of the electrons passing through which may open the way for new spintronic compute March 5th, 2021

Photonics/Optics/Lasers

A COSMIC approach to nanoscale science: Instrument at Berkeley Lab's Advanced Light Source achieves world-leading resolution of nanomaterials March 5th, 2021

Light in concert with force reveals how materials become harder when illuminated: When indented by a probe in darkness, wafers of some semiconductors are putty-like. When illuminated by light whose wavelength matches the band gap, they become hard, as electrons and holes freed by March 5th, 2021

CEA-Leti Announces 16 Papers to Be Presented At Photonics West 2021 and a Virtual Workshop on March 25 March 3rd, 2021

From microsaws to nanodrills: laser pulses act as subtle machining tools: Industrial-grade materials processing on the sub-micron scale is enabled by spatially structured ultrashort laser pulses February 26th, 2021

Quantum nanoscience

Physicists propose a new theory to explain one dimensional quantum liquids formation January 15th, 2021

Microfabricated elastic diamonds improve material's electronic properties January 1st, 2021

Quantum wave in helium dimer filmed for the first time: Collaboration between Goethe University and the University of Oklahoma December 30th, 2020

Theory describes quantum phenomenon in nanomaterials: Osaka City University scientists have developed mathematical formulas to describe the current and fluctuations of strongly correlated electrons in quantum dots. Their theoretical predictions could soon be tested experimentally December 25th, 2020

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project