Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Researchers develop new way to break reciprocity law: The breakthrough makes a significant step forward in photonics and microwave technology by eliminating the need for bulky magnets

One-way light transmission.

CREDIT
Xuchen Wang / Aalto University
One-way light transmission. CREDIT Xuchen Wang / Aalto University

Abstract:
An international research team lead by Aalto University has found a new and simple route to break the reciprocity law in the electromagnetic world, by changing material properties periodically in time. The breakthrough could help to create efficient nonreciprocal devices, such as compact isolators and circulators, that are needed for the next generation of microwave and optical communications systems.

Researchers develop new way to break reciprocity law: The breakthrough makes a significant step forward in photonics and microwave technology by eliminating the need for bulky magnets

Aalto, Finland | Posted on December 29th, 2020

When we look through a window and see our neighbour on the street, the neighbour can also see us. This is called reciprocity, and it is the most common physical phenomenon in nature. Electromagnetic signals propagating between two sources is always governed by reciprocity law: if the signal from source A can be received by source B, then the signal from source B can also be received by source A with equal efficiency.

Researchers from Aalto University, Stanford University, and Swiss Federal Institute of Technology in Lausanne (EPFL) have successfully demonstrated that the reciprocity law can be broken if the property of the propagation medium periodically changes in time. Propagation medium refers to a material in which light and electromagnetic waves survive and propagate from one point to another.

The team theoretically demonstrated that, if the medium is shaped into an asymmetric structure and its physical property varies globally in time, the signal generated by source A can be received by source B but not the other way around. This creates a strong nonreciprocal effect, since the signal from Source B cannot be received by source A.

'This is an important milestone in both the physics and engineering communities. We need one-way light transmission for a variety of applications, like stabilising laser operation or designing future communication systems, such as full-duplex systems with increased channel capacity,' says postdoctoral researcher Xuchen Wang from Aalto University.

Previously, creating a nonreciprocal effect has required external magnets biasing, which makes devices bulky, temperature unstable, and sometimes incompatible with other components. The new findings provide the simplest and most compact way to break electromagnetic reciprocity, without the need of bulky and heavy magnets.

'Such "time-only" variations allow us to design simple and compact material platforms capable of one-way light transmission and even amplification,' Xuchen explains.

The results are reported in Physical Review Letters on 22 December 2020. The study has received funding from the Academy of Finland, European Union's Horizon 2020 Future Emerging Technologies call (FETOPEN - RIA) under project VISORSURF, the Finnish Foundation for Technology Promotion, and the U.S. Air Force Office of Scientific Research MURI project (Grant No. FA9550-18-1-0379).

####

For more information, please click here

Contacts:
Xuchen Wang

358-503-097-794

@aaltouniversity

Copyright © Aalto University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

RELATED JOURNAL ARTICLE:

Related News Press

Wireless/telecommunications/RF/Antennas/Microwaves

MXene-GaN van der Waals metal-semiconductor junctions for high performance photodetection September 24th, 2021

News and information

Brought into line: FAU physicists control the flow of electron pulses through a nanostructure channel September 24th, 2021

Nanocellulose decorated with proteins is suitable for 3D cell culturing September 24th, 2021

Development of dendritic-network-implementable artificial neurofiber transistors: Transistors with a fibrous architecture similar to those of neurons are capable of forming artificial neural networks. Fibrous networks can be used in smart wearable devices and robots September 24th, 2021

Researchers use breakthrough method to answer key question about electron states September 24th, 2021

Govt.-Legislation/Regulation/Funding/Policy

UTA project aims to extend life of concrete, cement by adding nanoscale wood fibers: Wood fibers key to sustainable concrete, cement September 24th, 2021

A simple way to get complex semiconductors to assemble themselves: Much like crystallizing rock candy from sugar syrup, the new method grows 2D perovskites precisely layered with other 2D materials to produce crystals with a wide range of electronic properties September 17th, 2021

Scientists demonstrate pathway to forerunner of nanotubes that could lead to widespread industrial fabrication September 17th, 2021

Stretching the capacity of flexible energy storage September 10th, 2021

Possible Futures

Micro-scale opto-thermo-mechanical actuation in the dry adhesive regime Peer-Reviewed Publication September 24th, 2021

MXene-GaN van der Waals metal-semiconductor junctions for high performance photodetection September 24th, 2021

Nanocellulose decorated with proteins is suitable for 3D cell culturing September 24th, 2021

Development of dendritic-network-implementable artificial neurofiber transistors: Transistors with a fibrous architecture similar to those of neurons are capable of forming artificial neural networks. Fibrous networks can be used in smart wearable devices and robots September 24th, 2021

Discoveries

Fabricating MgB2 superconductors using spark plasma sintering and pulse magnetization: New research suggests that highly dense MgB2 bulks have improved mechanical and superconducting properties September 24th, 2021

Brought into line: FAU physicists control the flow of electron pulses through a nanostructure channel September 24th, 2021

Nanocellulose decorated with proteins is suitable for 3D cell culturing September 24th, 2021

Researchers use breakthrough method to answer key question about electron states September 24th, 2021

Announcements

Brought into line: FAU physicists control the flow of electron pulses through a nanostructure channel September 24th, 2021

Nanocellulose decorated with proteins is suitable for 3D cell culturing September 24th, 2021

Development of dendritic-network-implementable artificial neurofiber transistors: Transistors with a fibrous architecture similar to those of neurons are capable of forming artificial neural networks. Fibrous networks can be used in smart wearable devices and robots September 24th, 2021

Researchers use breakthrough method to answer key question about electron states September 24th, 2021

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Micro-scale opto-thermo-mechanical actuation in the dry adhesive regime Peer-Reviewed Publication September 24th, 2021

MXene-GaN van der Waals metal-semiconductor junctions for high performance photodetection September 24th, 2021

Fabricating MgB2 superconductors using spark plasma sintering and pulse magnetization: New research suggests that highly dense MgB2 bulks have improved mechanical and superconducting properties September 24th, 2021

Brought into line: FAU physicists control the flow of electron pulses through a nanostructure channel September 24th, 2021

Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records

UTA project aims to extend life of concrete, cement by adding nanoscale wood fibers: Wood fibers key to sustainable concrete, cement September 24th, 2021

Lehigh University to lead ‘integrative partnerships’ for multi-university research collaboration in advanced optoelectronic material development: 5-year, $25 million NSF investment in IMOD, a revolutionary center for optoelectronic, quantum technologies September 10th, 2021

Leibniz Prize winner Professor Dr. Oliver G. Schmidt moves to Chemnitz University of Technology: President Professor Dr. Gerd Strohmeier refers to an 'absolute top transfer' September 10th, 2021

New molecular device has unprecedented reconfigurability reminiscent of brain plasticity: Device can be reconfigured multiple times simply by changing applied voltage September 3rd, 2021

Photonics/Optics/Lasers

MXene-GaN van der Waals metal-semiconductor junctions for high performance photodetection September 24th, 2021

Brought into line: FAU physicists control the flow of electron pulses through a nanostructure channel September 24th, 2021

New substance classes for nanomaterials: Nano spheres and diamond slivers made of silicon and germanium: Potential applications as nano semiconductor materials September 10th, 2021

Ultrafast & ultrathin: new physics professor at TU Dresden makes mysterious quantum world visible September 10th, 2021

Research partnerships

A simple way to get complex semiconductors to assemble themselves: Much like crystallizing rock candy from sugar syrup, the new method grows 2D perovskites precisely layered with other 2D materials to produce crystals with a wide range of electronic properties September 17th, 2021

Lehigh University to lead ‘integrative partnerships’ for multi-university research collaboration in advanced optoelectronic material development: 5-year, $25 million NSF investment in IMOD, a revolutionary center for optoelectronic, quantum technologies September 10th, 2021

Tapping into magnets to clamp down on noise in quantum information September 9th, 2021

New molecular device has unprecedented reconfigurability reminiscent of brain plasticity: Device can be reconfigured multiple times simply by changing applied voltage September 3rd, 2021

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project