Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Ultra-fast gas flows through tiniest holes in 2D membranes: Researchers from the National Graphene Institute at the University of Manchester and the University of Pennsylvania identify ultra-fast gas flows through atomic-scale apertures in 2D membrane and validate a century-old e

Researchers identify ultra-fast gas flows through atomic-scale apertures in 2D membrane and validate a century-old equation of fluid dynamics.

CREDIT
N Hassani & M N-Amal, Shahid Rajee University
Researchers identify ultra-fast gas flows through atomic-scale apertures in 2D membrane and validate a century-old equation of fluid dynamics. CREDIT N Hassani & M N-Amal, Shahid Rajee University

Abstract:
Researchers from the National Graphene Institute at the University of Manchester and the University of Pennsylvania have identified ultra-fast gas flows through the tiniest holes in one-atom-thin membranes, in a study published in Science Advances.

Ultra-fast gas flows through tiniest holes in 2D membranes: Researchers from the National Graphene Institute at the University of Manchester and the University of Pennsylvania identify ultra-fast gas flows through atomic-scale apertures in 2D membrane and validate a century-old e

Philadelphia, PA | Posted on December 18th, 2020

The work - alongside another study from Penn on the creation of such nano-porous membranes - holds promise for numerous application areas, from water and gas purification to monitoring of air quality and energy harvesting.

In the early 20th century, renowned Danish physicist Martin Knudsen formulated theories to describe gas flows. Emerging new systems of narrower pores challenged the Knudsen descriptions of gas flows, but they remained valid and it was unknown at which point of diminishing scale they might fail.

The Manchester team - led by Professor Radha Boya, in collaboration with the University of Pennsylvania team, led by Professor Marija Drndi? - has shown for the first time that Knudsen's description seems to hold true at the ultimate atomic limit.

The science of two dimensional (2D)-materials is progressing rapidly and it is now routine for researchers to make one-atom-thin membranes. Professor Drndi?'s group in Pennsylvania developed a method to drill holes, one atom wide, on a monolayer of tungsten disulphide. One important question remained, though: to check if the atomic-scale holes were through and conducting, without actually seeing them manually, one by one. The only way previously to confirm if the holes were present and of the intended size, was to inspect them in a high resolution electron microscope.

Professor Boya's team developed a technique to measure gas flows through atomic holes, and in turn use the flow as a tool to quantify the hole density. She said: "Although it is beyond doubt that seeing is believing, the science has been pretty much limited by being able to only seeing the atomic pores in a fancy microscope. Here we have devices through which we can not only measure gas flows, but also use the flows as a guide to estimate how many atomic holes were there in the membrane to start with."

J Thiruraman, the co-first author of the study, said: "Being able to reach that atomic scale experimentally, and to have the imaging of that structure with precision so you can be more confident it's a pore of that size and shape, was a challenge."

Professor Drndi? added: "There's a lot of device physics between finding something in a lab and creating a usable membrane. That came with the advancement of the technology as well as our own methodology, and what is novel here is to integrate this into a device that you can actually take out, transport across the ocean if you wish [to Manchester], and measure."

Dr Ashok Keerthi, another lead author from the Manchester team, said: "Manual inspection of the formation of atomic holes over large areas on a membrane is painstaking and probably impractical. Here we use a simple principle, the amount of the gas the membrane lets through is a measure of how holey it is."

The gas flows achieved are several orders of magnitude larger than previously observed flows in angstrom-scale pores in literature. A one-to-one correlation of atomic aperture densities by transmission electron microscopy imaging (measured locally) and from gas flows (measured on a large scale) was combined by this study and published by the team. S Dar, a co-author from Manchester added: "Surprisingly there is no/minimal energy barrier to the flow through such tiny holes."

Professor Boya added: "We now have a robust method for confirming the formation of atomic apertures over large areas using gas flows, which is an essential step for pursuing their prospective applications in various domains including molecular separation, sensing and monitoring of gases at ultra-low concentrations."

###

This work was conducted through an international collaboration and, includes experimental teams from Manchester and Philadelphia, and as well as theoretical groups from Shahid Rajee University, Iran and the University of Antwerp, Belgium.

####

For more information, please click here

Contacts:
Erica Brockmeier


@Penn

Copyright © University of Pennsylvania

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

RELATED JOURNAL ARTICLE:

Related News Press

News and information

Optimized method to detect high-dimensional entanglement December 3rd, 2021

Scientists edge closer to probe that would inspect atherosclerotic plaques by forcing molecules to sound their presence December 3rd, 2021

Two-dimensional bipolar magnetic semiconductors with high Curie-temperature and electrically controllable spin polarization realized in exfoliated Cr(pyrazine)2 monolayers December 3rd, 2021

Review on the femtosecond laser precision micro/nano-engineering December 3rd, 2021

Development of a single-process platform for the manufacture of graphene quantum dots: Precisely controls the bonding configuration of heteroatoms in graphene quantum dots through simple chemical processes. Practical application and commercialization in various fields is expected December 3rd, 2021

2 Dimensional Materials

Two-dimensional bipolar magnetic semiconductors with high Curie-temperature and electrically controllable spin polarization realized in exfoliated Cr(pyrazine)2 monolayers December 3rd, 2021

Developing high-performance MXene electrodes for next-generation powerful battery November 19th, 2021

A new dimension in magnetism and superconductivity launched November 5th, 2021

Graphene/ Graphite

Development of a single-process platform for the manufacture of graphene quantum dots: Precisely controls the bonding configuration of heteroatoms in graphene quantum dots through simple chemical processes. Practical application and commercialization in various fields is expected December 3rd, 2021

Possible Futures

Researchers develop polyimide-mica nanocomposite film with high resistance to low earth orbit environments December 3rd, 2021

Researchers realize ultra-high precision search for exotic interactions December 3rd, 2021

Optimized method to detect high-dimensional entanglement December 3rd, 2021

Scientists edge closer to probe that would inspect atherosclerotic plaques by forcing molecules to sound their presence December 3rd, 2021

Discoveries

Researchers develop polyimide-mica nanocomposite film with high resistance to low earth orbit environments December 3rd, 2021

Researchers realize ultra-high precision search for exotic interactions December 3rd, 2021

Optimized method to detect high-dimensional entanglement December 3rd, 2021

Scientists edge closer to probe that would inspect atherosclerotic plaques by forcing molecules to sound their presence December 3rd, 2021

Announcements

Scientists edge closer to probe that would inspect atherosclerotic plaques by forcing molecules to sound their presence December 3rd, 2021

Two-dimensional bipolar magnetic semiconductors with high Curie-temperature and electrically controllable spin polarization realized in exfoliated Cr(pyrazine)2 monolayers December 3rd, 2021

Review on the femtosecond laser precision micro/nano-engineering December 3rd, 2021

Development of a single-process platform for the manufacture of graphene quantum dots: Precisely controls the bonding configuration of heteroatoms in graphene quantum dots through simple chemical processes. Practical application and commercialization in various fields is expected December 3rd, 2021

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Using green tea as reducing reagent for the preparation of nanomaterials to synthesize ammonia December 3rd, 2021

Researchers develop polyimide-mica nanocomposite film with high resistance to low earth orbit environments December 3rd, 2021

Researchers realize ultra-high precision search for exotic interactions December 3rd, 2021

Development of a single-process platform for the manufacture of graphene quantum dots: Precisely controls the bonding configuration of heteroatoms in graphene quantum dots through simple chemical processes. Practical application and commercialization in various fields is expected December 3rd, 2021

Energy

Using green tea as reducing reagent for the preparation of nanomaterials to synthesize ammonia December 3rd, 2021

Two is better than one: Single-atom dimer electrocatalyst for green hydrogen production: Nickel-cobalt metal dimer on nitrogen-doped carbon can catalyze electrolysis under both acidic and basic conditions November 19th, 2021

Reaction-dependent coffee-ring-regulating method in spray-coating perovskite November 5th, 2021

A sunny outlook for solar: New research demonstrates great promise of all-inorganic perovskite solar cells for improving the efficiencies of solar cells October 15th, 2021

Water

Water as a metal July 30th, 2021

Researchers develop new graphene nanochannel water filters January 22nd, 2021

Controlling the nanoscale structure of membranes is key for clean water, researchers find January 1st, 2021

Industrial-strength brine, meet your kryptonite: Boron nitride coating is key ingredient in hypersaline desalination technology November 6th, 2020

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project