Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Improving quantum dot interactions, one layer at a time: Scientists have found a way to control an interaction between quantum dots that could lead to more efficient solar cells

Low quantum dot concentrations during superlattice fabrication suppresses quantum resonance between dots in the same layer, while high concentrations activates it

CREDIT
DaeGwi Kim, Osaka City University
Low quantum dot concentrations during superlattice fabrication suppresses quantum resonance between dots in the same layer, while high concentrations activates it CREDIT DaeGwi Kim, Osaka City University

Abstract:
Osaka City University scientists and colleagues in Japan have found a way to control an interaction between quantum dots that could greatly improve charge transport, leading to more efficient solar cells. Their findings were published in the journal Nature Communications.

Improving quantum dot interactions, one layer at a time: Scientists have found a way to control an interaction between quantum dots that could lead to more efficient solar cells

Osaka, Japan | Posted on November 20th, 2020

Nanomaterials engineer DaeGwi Kim led a team of scientists at Osaka City University, RIKEN Center for Emergent Matter Science and Kyoto University to investigate ways to control a property called quantum resonance in layered structures of quantum dots called superlattices.

"Our simple method for fine-tuning quantum resonance is an important contribution to both optical materials and nanoscale material processing," says Kim.

Quantum dots are nanometer-sized semiconductor particles with interesting optical and electronic properties. When light is shone on them, for example, they emit strong light at room temperature, a property called photoluminescence. When quantum dots are close enough to each other, their electronic states are coupled, a phenomenon called quantum resonance. This greatly improves their ability to transport electrons between them. Scientists have been wanting to manufacture devices using this interaction, including solar cells, display technologies, and thermoelectric devices.

However, they have so far found it difficult to control the distances between quantum dots in 1D, 2D and 3D structures. Current fabrication processes use long ligands to hold quantum dots together, which hinders their interactions.

Kim and his colleagues found they could detect and control quantum resonance by using cadmium telluride quantum dots connected with short N-acetyl-L-cysteine ligands. They controlled the distance between quantum dot layers by placing a spacer layer between them made of oppositely charged polyelectrolytes. Quantum resonance is detected between stacked dots when the spacer layer is thinner than two nanometers. The scientists also controlled the distance between quantum dots in a single layer, and thus quantum resonance, by changing the concentration of quantum dots used in the layering process.

The team next plans to study the optical properties, especially photoluminescence, of quantum dot superlattices made using their layer-by-layer approach. "This is extremely important for realizing new optical electronic devices made with quantum dot superlattices," says Kim.

Kim adds that their fabrication method can be used with other types of water-soluble quantum dots and nanoparticles. "Combining different types of semiconductor quantum dots, or combining semiconductor quantum dots with other nanoparticles, will expand the possibilities of new material design," says Kim.

####

About Osaka City University
We are Osaka City University - the oldest research university in Osaka. With 9 undergraduate faculties and 11 graduate schools all dedicated to making urban life better, energy cleaner, and people healthier and happier, we have won numerous awards and have produced 2 Nobel laureates. For more information, please visit our website at https://www.osaka-cu.ac.jp/en

For more information, please click here

Contacts:
James Gracey

81-666-053-592

@OCU_PR

Copyright © Osaka City University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

RELATED JOURNAL ARTICLE:

Related News Press

News and information

Hanging by a thread: Imaging and probing chains of single atoms: Scientists develop a method to visualize monoatomic chains and measure the strength and conductance of single-atom bonds May 14th, 2021

Nanophotonics enhanced coverslip for phase imaging in biology May 14th, 2021

New technology enables rapid sequencing of entire genomes of plant pathogens May 14th, 2021

Harvesting light like nature does:Synthesizing a new class of bio-inspired, light-capturing nanomaterials May 14th, 2021

Display technology/LEDs/SS Lighting/OLEDs

Use of perovskite will be a key feature of the next generation of electronic appliances: Nanomaterials of perovskite dispersed in hexane and irradiated by laser; light emission by these materials is intense thanks to resistance to surface defects March 12th, 2021

Light-emitting tattoo engineered for the first time: Scientists at UCL and the IIT -Istituto Italiano di Tecnologia (Italian Institute of Technology) have created a temporary tattoo with light-emitting technology used in TV and smartphone screens, paving the way for a new type of March 4th, 2021

Aledia, French Developer of Next-Generation MicroLED Displays For High-Volume Consumer Markets, Announces it Has Produced its First Nanowire Chips on 300mm Silicon Wafers Using CEA-Leti Pilot Lines: Company will produce microLEDs on both 200mm and 300mm silicon wafers December 15th, 2020

An LED that can be integrated directly into computer chips: The advance could cut production costs and reduce the size of microelectronics for sensing and communication December 14th, 2020

Possible Futures

Emergence of a new heteronanostructure library May 14th, 2021

New technology enables rapid sequencing of entire genomes of plant pathogens May 14th, 2021

Harvesting light like nature does:Synthesizing a new class of bio-inspired, light-capturing nanomaterials May 14th, 2021

You're so vein: Scientists discover faster way to manufacture vascular materials May 14th, 2021

Discoveries

Emergence of a new heteronanostructure library May 14th, 2021

Hanging by a thread: Imaging and probing chains of single atoms: Scientists develop a method to visualize monoatomic chains and measure the strength and conductance of single-atom bonds May 14th, 2021

Nanophotonics enhanced coverslip for phase imaging in biology May 14th, 2021

You're so vein: Scientists discover faster way to manufacture vascular materials May 14th, 2021

Announcements

Emergence of a new heteronanostructure library May 14th, 2021

Nanophotonics enhanced coverslip for phase imaging in biology May 14th, 2021

New technology enables rapid sequencing of entire genomes of plant pathogens May 14th, 2021

Harvesting light like nature does:Synthesizing a new class of bio-inspired, light-capturing nanomaterials May 14th, 2021

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Hanging by a thread: Imaging and probing chains of single atoms: Scientists develop a method to visualize monoatomic chains and measure the strength and conductance of single-atom bonds May 14th, 2021

Nanophotonics enhanced coverslip for phase imaging in biology May 14th, 2021

New technology enables rapid sequencing of entire genomes of plant pathogens May 14th, 2021

Harvesting light like nature does:Synthesizing a new class of bio-inspired, light-capturing nanomaterials May 14th, 2021

Energy

Emergence of a new heteronanostructure library May 14th, 2021

A silver lining for extreme electronics April 30th, 2021

Less innocent than it looks: Hydrogen in hybrid perovskites: Researchers identify the defect that limits solar-cell performance April 30th, 2021

Wearable sensors that detect gas leaks April 19th, 2021

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

Tiny, Wireless, Injectable Chips Use Ultrasound to Monitor Body Processes May 12th, 2021

Better metric for thermoelectric materials means better design strategies: New quantity helps experimentally classify dimensionality of thermoelectric materials April 15th, 2021

Better metric for thermoelectric materials means better design strategies: New quantity helps experimentally classify dimensionality of thermoelectric materials April 15th, 2021

In-situ nanoscale insights into the evolution of solid electrolyte interphase shells April 2nd, 2021

Quantum Dots/Rods

Theory describes quantum phenomenon in nanomaterials: Osaka City University scientists have developed mathematical formulas to describe the current and fluctuations of strongly correlated electrons in quantum dots. Their theoretical predictions could soon be tested experimentally December 25th, 2020

Breakthrough quantum-dot transistors create a flexible alternative to conventional electronics: Quantum dot logic circuits provide the long-sought building blocks for innovative devices, including printable electronics, flexible displays, and medical diagnostics October 30th, 2020

A quantum material-based diagnostic paint to sense problems before structural failure October 23rd, 2020

Turning a hot spot into a cold spot: Fano-shaped local-field responses probed by a quantum dot October 9th, 2020

Solar/Photovoltaic

Harvesting light like nature does:Synthesizing a new class of bio-inspired, light-capturing nanomaterials May 14th, 2021

Less innocent than it looks: Hydrogen in hybrid perovskites: Researchers identify the defect that limits solar-cell performance April 30th, 2021

2D materials for conducting hole currents from grain boundaries in perovskite solar cells April 2nd, 2021

A PTV-based polymer enabled organic solar cells with over 16% efficiency April 2nd, 2021

Quantum nanoscience

Quantum steering for more precise measurements April 23rd, 2021

Shedding light on perovskite films: Efficient materials for future solar cells - New model to determine photoluminescence quantum efficiency March 16th, 2021

Scientists build the smallest cable containing a spin switch March 12th, 2021

Bringing Atoms to a Standstill: NIST Miniaturizes Laser Cooling January January 21st, 2021

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project