Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > HKU Engineering team develops novel miniaturised organic semiconductor: An important breakthrough essential for future flexible electronic devices

The completed monolayer organic transistors with transferred electrodes

CREDIT
The University of Hong Kong
The completed monolayer organic transistors with transferred electrodes CREDIT The University of Hong Kong

Abstract:
Field Effect Transistors (FET) are the core building blocks of modern electronics such as integrated circuits, computer CPUs and display backplanes. Organic Field Effect Transistors (OFETs), which use organic semiconductor as a channel for current flows, have the advantage of being flexible when compared with their inorganic counterparts like silicon.

HKU Engineering team develops novel miniaturised organic semiconductor: An important breakthrough essential for future flexible electronic devices

Hong Kong, China | Posted on October 8th, 2020

OFETs, given their high sensitivity, mechanical flexibility, biocompatibility, property tunability and low-cost fabrication, are considered to have great potential in new applications in wearable electronics, conformal health monitoring sensors, and bendable displays etc. Imagine TV screens that can be rolled up; or smart wearable electronic devices and clothing worn close to the body to collect vital body signals for instant biofeedback; or mini-robots made of harmless organic materials working inside the body for diseases diagnosis, target drug transportations, mini-surgeries and other medications and treatments.

Until now, the main limitation on enhanced performance and mass production of OFETs lies in the difficulty in miniaturising them. Products currently using OFETs in the market are still in their primitive forms, in terms of product flexibility and durability.

An engineering team led by Dr Paddy Chan Kwok Leung at the Department of Mechanical Engineering of the University of Hong Kong (HKU) has made an important breakthrough in developing the staggered structure monolayer Organic Field Effect Transistors, which sets a major cornerstone to reduce the size of OFETs. The result has been published in the academic journal Advanced Materials. A US patent has been filed for the innovation.

The major problem now confronting scientists in reducing the size of OFETs is that the performance of the transistor will drop significantly with a reduction in size, partly due to the problem of contact resistance, i.e. resistance at interfaces which resists current flows. When the device gets smaller, its contact resistance will become a dominating factor in significantly downgrading the device's performance.

The staggered structure monolayer OFETs created by Dr Chan's team demonstrate a record low normalized contact resistance of 40 Ω -cm. Compared with conventional devices with a contact resistance of 1000 Ω -cm, the new device can save 96% of power dissipation at contact when running the device at the same current level. More importantly, apart from energy saving, the excessive heat generated in the system, a common problem which causes semiconductors to fail, can be greatly reduced.

"On the basis of our achievement, we can further reduce the dimensions of OFETs and push them to a sub-micrometer scale, a level compatible with their inorganic counterparts, while can still function effectively to exhibit their unique organic properties. This is critical for meeting the requirement for commercialisation of related research." Dr Chan said.

"If flexible OFET works, many traditional rigid based electronics such as display panels, computers and cell phones would transform to become flexible and foldable. These future devices would be much lighter in weight, and with low production cost."

"Moreover, given their organic nature, they are more likely to be biocompatible for advanced medical applications such as sensors in tracking brain activities or neural spike sensing, and in precision diagnosis of brain related illness such as epilepsy." Dr Chan added.

Dr Chan's team is currently working with researchers at the HKU Faculty of Medicine and biomedical engineering experts at CityU to integrate the miniaturised OFETs into a flexible circuit onto a polymer microprobe for neural spike detections in-vivo on a mouse brain under different external stimulations. They also plan to integrate the OFETs onto surgical tools such as catheter tube, and then put it inside animals' brains for direct brain activities sensing to locate abnormal activation in brain.

"Our OFETs provide a much better signal to noise ratio. Therefore, we expect we can pick up some weak signals which cannot be detected before using the conventional bare electrode for sensing."

"It has been our goal to connect applied research with fundamental science. Our research achievement would hopefully open a blue ocean for OFETs research and applications. We believe that the setting and achievement on OFETs are now ready for applications in large area display backplane and surgical tools." Dr Chan concluded.

####

About The University of Hong Kong
The Faculty of Engineering is one of the founding Faculties of The University of Hong Kong established in 1912. Since its foundation, the Faculty has kept pace with developments in the engineering world and is always at the forefront of engineering research, evolving into one of the largest Faculties at the University with five departments providing undergraduate, postgraduate and research degrees in a wide range of important fields of modern engineering, technology and computer science. The Faculty aims at providing an all-round education for students, equipping graduates not only with knowledge of cutting-edge technology, but also excellent communication and social skills, an innovation mindset, a lifelong learning attitude, professional integrity and international exposure. For more information, visit https://engg.hku.hk .

For more information, please click here

Contacts:
Celia Lee

852-391-78519

Copyright © The University of Hong Kong

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Please click here for more details about Dr Chan's journal article entitled "Crystallized Monolayer Semiconductor for Ohmic Contact Resistance, High Intrinsic Gain, and High Current Density" :

Related News Press

News and information

The National Space Society Congratulates Blue Origin and Jeff Bezos for the Spectacular First Crewed Flight of the New Shepard: Well-Tested Suborbital Tourist Rocket Soars to 63 Miles; Opens New Frontiers July 21st, 2021

Unconventional superconductor acts the part of a promising quantum computing platform: If it looks like a duck, swims like a duck and quacks like a duck, then it probably is a duck. July 16th, 2021

Unlocking efficient light-energy conversion with stable coordination nanosheets: Scientists design a high-performance, self-powered, UV photodetector using 2D nanosheets that show record photocurrent stability under air exposure July 16th, 2021

The virus trap: Hollow nano-objects made of DNA could trap viruses and render them harmless July 16th, 2021

Primers with graphene nanotubes offer a new solution for electrostatic painting of automotive parts July 16th, 2021

Display technology/LEDs/SS Lighting/OLEDs

Removing the lead hazard from perovskite solar cells July 16th, 2021

Nanotech OLED electrode liberates 20% more light, could slash display power consumption: A five-nanometer-thick layer of silver and copper outperforms conventional indium tin oxide without adding cost June 29th, 2021

Pushing the boundaries of colloidal quantum dots by making their sizes equal: Scientists demonstrate the relationship between optoelectronic performance and size uniformity in perovskite colloidal quantum dots June 25th, 2021

Organic Electronics

Molecular coating enhances organic solar cells June 11th, 2021

Flexible Electronics

A molecule like a nanobattery: Chemical scientists decipher complex electronic structure of a three-nuclear metallorganic compound with the capacity of donating and receiving multiple electrons June 9th, 2021

Robotics

CEA-Leti Introduces Plastic mmWave System for Applications Requiring Ultra-Low Latency and Ultra-High-Speed Connectivity: Low-Cost Gb/s Connectivity Overcomes Limits of Copper Wire and Optical Fiber For Automotive, Aeronautics, Telecom, Industry 4.0 and Healthcare Uses May 28th, 2021

Simple robots, smart algorithms April 30th, 2021

New brain-like computing device simulates human learning: Researchers conditioned device to learn by association, like Pavlov's dog April 30th, 2021

Kirigami-style fabrication may enable new 3D nanostructures April 2nd, 2021

Possible Futures

The National Space Society Congratulates Blue Origin and Jeff Bezos for the Spectacular First Crewed Flight of the New Shepard: Well-Tested Suborbital Tourist Rocket Soars to 63 Miles; Opens New Frontiers July 21st, 2021

Scientists create rechargeable swimming microrobots using oil and water July 16th, 2021

Scientists take first snapshots of ultrafast switching in a quantum electronic device: They discover a short-lived state that could lead to faster and more energy-efficient computing devices July 16th, 2021

Researchers discover a new inorganic material with lowest thermal conductivity ever reported July 16th, 2021

Chip Technology

Unconventional superconductor acts the part of a promising quantum computing platform: If it looks like a duck, swims like a duck and quacks like a duck, then it probably is a duck. July 16th, 2021

Repairs using light signals: FAU research group develops smart microparticle that identifies defective parts in electrical appliances July 16th, 2021

Scientists take first snapshots of ultrafast switching in a quantum electronic device: They discover a short-lived state that could lead to faster and more energy-efficient computing devices July 16th, 2021

Stress-free path to stress-free metallic films paves the way for next-gen circuitry: Optimized sputtering technique helps minimize stress in tungsten thin films July 4th, 2021

Nanomedicine

The virus trap: Hollow nano-objects made of DNA could trap viruses and render them harmless July 16th, 2021

NYUAD study maps nanobody structure, leading to new ways to potentially fight diseases July 4th, 2021

Optical tweezer technology tweaked to overcome dangers of heat June 25th, 2021

Arrowhead Presents Preclinical Data on ARO-DUX4 at FSHD Society International Research Congress June 25th, 2021

Discoveries

Repairs using light signals: FAU research group develops smart microparticle that identifies defective parts in electrical appliances July 16th, 2021

Removing the lead hazard from perovskite solar cells July 16th, 2021

Scientists create rechargeable swimming microrobots using oil and water July 16th, 2021

Scientists take first snapshots of ultrafast switching in a quantum electronic device: They discover a short-lived state that could lead to faster and more energy-efficient computing devices July 16th, 2021

Announcements

The National Space Society Congratulates Blue Origin and Jeff Bezos for the Spectacular First Crewed Flight of the New Shepard: Well-Tested Suborbital Tourist Rocket Soars to 63 Miles; Opens New Frontiers July 21st, 2021

Scientists create rechargeable swimming microrobots using oil and water July 16th, 2021

Scientists take first snapshots of ultrafast switching in a quantum electronic device: They discover a short-lived state that could lead to faster and more energy-efficient computing devices July 16th, 2021

Researchers discover a new inorganic material with lowest thermal conductivity ever reported July 16th, 2021

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

RUDN University chemists obtained an unusual planar nickel complex exhibiting magnetic properties July 16th, 2021

Repairs using light signals: FAU research group develops smart microparticle that identifies defective parts in electrical appliances July 16th, 2021

Scientists create rechargeable swimming microrobots using oil and water July 16th, 2021

Scientists take first snapshots of ultrafast switching in a quantum electronic device: They discover a short-lived state that could lead to faster and more energy-efficient computing devices July 16th, 2021

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project