Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > New design principles for spin-based quantum materials: Criteria for designing targeted quantum materials could support Internet of Things devices and other resource-intensive technologies

A crystal structure (left) and a visual model of the spin helix (right).
A crystal structure (left) and a visual model of the spin helix (right).

Abstract:
As our lives become increasingly intertwined with technology -- whether supporting communication while working remotely or streaming our favorite show -- so too does our reliance on the data these devices create. Data centers supporting these technology ecosystems produce a significant carbon footprint -- and consume 200 terawatt hours of energy each year, greater than the annual energy consumption of Iran. To balance ecological concerns yet meet growing demand, advances in microelectronic processors -- the backbone of many Internet of Things (IoT) devices and data hubs -- must be efficient and environmentally friendly.

New design principles for spin-based quantum materials: Criteria for designing targeted quantum materials could support Internet of Things devices and other resource-intensive technologies

Evanston, IL | Posted on September 20th, 2020

Northwestern University materials scientists have developed new design principles that could help spur development of future quantum materials used to advance (IoT) devices and other resource-intensive technologies while limiting ecological damage.

"New path-breaking materials and computing paradigms are required to make data centers more energy-lean in the future," said James Rondinelli, professor of materials science and engineering and the Morris E. Fine Professor in Materials and Manufacturing at the McCormick School of Engineering, who led the research.

The study marks an important step in Rondinelli's efforts to create new materials that are non-volatile, energy efficient, and generate less heat -- important aspects of future ultrafast, low-power electronics and quantum computers that can help meet the world's growing demand for data.

Rather than certain classes of semiconductors using the electron's charge in transistors to power computing, solid-state spin-based materials utilize the electron's spin and have the potential to support low-energy memory devices. In particular, materials with a high-quality persistent spin texture (PST) can exhibit a long-lived persistent spin helix (PSH), which can be used to track or control the spin-based information in a transistor.

Although many spin-based materials already encode information using spins, that information can be corrupted as the spins propagate in the active portion of the transistor. The researchers' novel PST protects that spin information in helix form, making it a potential platform where ultralow energy and ultrafast spin-based logic and memory devices operate.

The research team used quantum-mechanical models and computational methods to develop a framework to identify and assess the spin textures in a group of non-centrosymmetric crystalline materials. The ability to control and optimize the spin lifetimes and transport properties in these materials is vital to realizing the future of quantum microelectronic devices that operate with low energy consumption.

"The limiting characteristic of spin-based computing is the difficulty in attaining both long-lived and fully controllable spins from conventional semiconductor and magnetic materials," Rondinelli said. "Our study will help future theoretical and experimental efforts aimed at controlling spins in otherwise non-magnetic materials to meet future scaling and economic demands."

Rondinelli's framework used microscopic effective models and group theory to identify three materials design criteria that would produce useful spin textures: carrier density, the number of electrons propagating through an effective magnetic field, Rashba anisotropy, the ratio between intrinsic spin-orbit coupling parameters of the materials, and momentum space occupation, the PST region active in the electronic band structure. These features were then assessed using quantum-mechanical simulations to discover high-performing PSHs in a range of oxide-based materials.

The researchers used these principles and numerical solutions to a series of differential spin-diffusion equations to assess the spin texture of each material and predict the spin lifetimes for the helix in the strong spin-orbit coupling limit. They also found they could adjust and improve the PST performance using atomic distortions at the picoscale. The group determined an optimal PST material, Sr3Hf2O7, which showed a substantially longer spin lifetime for the helix than in any previously reported material.

"Our approach provides a unique chemistry-agnostic strategy to discover, identify, and assess symmetry-protected persistent spin textures in quantum materials using intrinsic and extrinsic criteria," Rondinelli said. "We proposed a way to expand the number of space groups hosting a PST, which may serve as a reservoir from which to design future PST materials, and found yet another use for ferroelectric oxides -- compounds with a spontaneous electrical polarization. Our work also will help guide experimental efforts aimed at implementing the materials in real device structures."

###

A paper describing the work, titled "Discovery Principles and Materials for Symmetry-Protected Persistent Spin Textures with Long Spin Lifetimes," was published online on September 18 in the journal Matter. The research was supported by the Army Research Office.

####

For more information, please click here

Contacts:
Amanda Morris

847-467-6790

@northwesternu

Copyright © Northwestern University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

RELATED JOURNAL ARTICLE:

Related News Press

News and information

How photoblueing disturbs microscopy February 26th, 2021

Changing the silkworm's diet to spin stronger silk February 26th, 2021

From microsaws to nanodrills: laser pulses act as subtle machining tools: Industrial-grade materials processing on the sub-micron scale is enabled by spatially structured ultrashort laser pulses February 26th, 2021

Nanoparticles help untangle Alzheimer's disease amyloid beta plaques: New research shows that the protein that causes Alzheimer's disease's hallmark brain plaques clings to certain bowl-shaped nanoparticles, allowing researchers to better understand the disease and potentially pr February 26th, 2021

Quantum Physics

Atomic nuclei in the quantum swing: The extremely precise control of nuclear excitations opens up possibilities of ultra-precise atomic clocks and powerful nuclear batteries February 19th, 2021

Quantum Optimization: Computer scientist Yufei Ding receives NSF Early CAREER Award to advance efforts to improve quantum applications January 21st, 2021

Bringing Atoms to a Standstill: NIST Miniaturizes Laser Cooling January January 21st, 2021

Physicists propose a new theory to explain one dimensional quantum liquids formation January 15th, 2021

Researchers realize efficient generation of high-dimensional quantum teleportation January 14th, 2021

Quantum chemistry

Physicists propose a new theory to explain one dimensional quantum liquids formation January 15th, 2021

CCNY & partners in quantum algorithm breakthrough November 13th, 2020

Govt.-Legislation/Regulation/Funding/Policy

Bioinformatics tool accurately tracks synthetic: DNA Computer scientists show benefits of bioinformatics with PlasmidHawk February 26th, 2021

Researchers improve efficiency of next-generation solar cell material: Reducing internal losses could pave the way to low-cost perovskite-based photovoltaics that match silicon cells’ output February 26th, 2021

Dynamics of nanoparticles using a new isolated lymphatic vessel lumen perfusion system February 19th, 2021

Pore-like proteins designed from scratch: By creating barrel-shaped proteins that embed into lipid membranes, biochemist have expanded the bioengineering toolkit February 19th, 2021

Possible Futures

Changing the silkworm's diet to spin stronger silk February 26th, 2021

From microsaws to nanodrills: laser pulses act as subtle machining tools: Industrial-grade materials processing on the sub-micron scale is enabled by spatially structured ultrashort laser pulses February 26th, 2021

Nanoparticles help untangle Alzheimer's disease amyloid beta plaques: New research shows that the protein that causes Alzheimer's disease's hallmark brain plaques clings to certain bowl-shaped nanoparticles, allowing researchers to better understand the disease and potentially pr February 26th, 2021

Researchers improve efficiency of next-generation solar cell material: Reducing internal losses could pave the way to low-cost perovskite-based photovoltaics that match silicon cells’ output February 26th, 2021

Chip Technology

Engineering the boundary between 2D and 3D materials: Cutting-edge microscope helps reveal ways to control the electronic properties of atomically thin materials February 26th, 2021

CEA-Leti & Dolphin Design Report FD-SOI Breakthrough that Boosts Operating Frequency by 450% and Reduces Power Consumption by 30%: Joint Paper Presented at ISSCC 2021 Shows How New Adaptive Back-Biasing Technique Overcomes Integration Limits in Chip Design Flows February 23rd, 2021

A speed limit also applies in the quantum world: Study by the University of Bonn determines minimum time for complex quantum operations February 19th, 2021

Blueprint for fault-tolerant qubits: Scientists at Forschungszentrum Jülich and RWTH Aachen University have designed a circuit for quantum computers which is naturally protected against common errors February 19th, 2021

Discoveries

Bioinformatics tool accurately tracks synthetic: DNA Computer scientists show benefits of bioinformatics with PlasmidHawk February 26th, 2021

How photoblueing disturbs microscopy February 26th, 2021

Changing the silkworm's diet to spin stronger silk February 26th, 2021

Researchers improve efficiency of next-generation solar cell material: Reducing internal losses could pave the way to low-cost perovskite-based photovoltaics that match silicon cells’ output February 26th, 2021

Materials/Metamaterials

Changing the silkworm's diet to spin stronger silk February 26th, 2021

From microsaws to nanodrills: laser pulses act as subtle machining tools: Industrial-grade materials processing on the sub-micron scale is enabled by spatially structured ultrashort laser pulses February 26th, 2021

Islands without structure inside metal alloys could lead to tougher materials: These high-entropy alloys could lead to better technologies in transportation, energy and denfense January 29th, 2021

A little soap simplifies making 2D nanoflakes: Rice lab’s experiments refine processing of hexagonal boron nitride January 27th, 2021

Announcements

Changing the silkworm's diet to spin stronger silk February 26th, 2021

From microsaws to nanodrills: laser pulses act as subtle machining tools: Industrial-grade materials processing on the sub-micron scale is enabled by spatially structured ultrashort laser pulses February 26th, 2021

Nanoparticles help untangle Alzheimer's disease amyloid beta plaques: New research shows that the protein that causes Alzheimer's disease's hallmark brain plaques clings to certain bowl-shaped nanoparticles, allowing researchers to better understand the disease and potentially pr February 26th, 2021

Researchers improve efficiency of next-generation solar cell material: Reducing internal losses could pave the way to low-cost perovskite-based photovoltaics that match silicon cells’ output February 26th, 2021

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Changing the silkworm's diet to spin stronger silk February 26th, 2021

From microsaws to nanodrills: laser pulses act as subtle machining tools: Industrial-grade materials processing on the sub-micron scale is enabled by spatially structured ultrashort laser pulses February 26th, 2021

Nanoparticles help untangle Alzheimer's disease amyloid beta plaques: New research shows that the protein that causes Alzheimer's disease's hallmark brain plaques clings to certain bowl-shaped nanoparticles, allowing researchers to better understand the disease and potentially pr February 26th, 2021

Researchers improve efficiency of next-generation solar cell material: Reducing internal losses could pave the way to low-cost perovskite-based photovoltaics that match silicon cells’ output February 26th, 2021

Military

Bioinformatics tool accurately tracks synthetic: DNA Computer scientists show benefits of bioinformatics with PlasmidHawk February 26th, 2021

Researchers improve efficiency of next-generation solar cell material: Reducing internal losses could pave the way to low-cost perovskite-based photovoltaics that match silicon cells’ output February 26th, 2021

Discovery could lead to self-propelled robots February 2nd, 2021

Islands without structure inside metal alloys could lead to tougher materials: These high-entropy alloys could lead to better technologies in transportation, energy and denfense January 29th, 2021

Environment

Producing more sustainable hydrogen with composite polymer dots UPPSALA UNIVERSITY February 12th, 2021

Arctic warming and diminishing sea ice are influencing the atmosphere: Researchers of the University of Helsinki have resolved for the first time, how the environment affects the formation of nanoparticles in the Arctic. The results give additional insight into the future of melt January 29th, 2021

Boosting the efficiency of carbon capture and conversion systems: New design could speed reaction rates in electrochemical systems for pulling carbon out of power plant emissions January 25th, 2021

Phytoplankton disturbed by nanoparticles: Due to its antibacterial properties, nanosilver is used in a wide range of products from textiles to cosmetics; but nanosilver if present at high concentrations also disrupts the metabolism of algae that are essential for the aquatic food November 27th, 2020

Energy

Researchers improve efficiency of next-generation solar cell material: Reducing internal losses could pave the way to low-cost perovskite-based photovoltaics that match silicon cells’ output February 26th, 2021

Producing more sustainable hydrogen with composite polymer dots UPPSALA UNIVERSITY February 12th, 2021

Islands without structure inside metal alloys could lead to tougher materials: These high-entropy alloys could lead to better technologies in transportation, energy and denfense January 29th, 2021

Squeezing a rock-star material could make it stable enough for solar cells: A promising lead halide perovskite is great at converting sunlight to electricity, but it breaks down at room temperature; now scientists have discovered how to stabilize it with pressure from a diamond a January 22nd, 2021

Quantum nanoscience

Bringing Atoms to a Standstill: NIST Miniaturizes Laser Cooling January January 21st, 2021

Physicists propose a new theory to explain one dimensional quantum liquids formation January 15th, 2021

Microfabricated elastic diamonds improve material's electronic properties January 1st, 2021

Quantum wave in helium dimer filmed for the first time: Collaboration between Goethe University and the University of Oklahoma December 30th, 2020

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project