Home > Press > Photoinduced large polaron transport and dynamics in organic-inorganic hybrid lead halide perovskite with terahertz probes
![]() |
The photoexcited charge carrier is “dressed” by the local lattice distortion, which is revealed by ultrafast conductivity measurements using terahertz transient. CREDIT by Zuanming Jin, Yan Peng, Yuqing Fang, Zhijiang Ye, Zhiyuan Fan, Zhilin Liu, Xichang Bao, Heng Gao, Wei Ren, Jing Wu, Guohong Ma, Qianli Chen, Chao Zhang, Alexey V. Balakin, Alexander P. Shkurinov, Yiming Zhu, Songlin Zhuang |
Abstract:
Organic-inorganic hybrid metal halide perovskites (MHPs) have attracted tremendous attention for optoelectronic applications. For example, cost-effective solar cells, solid-state lighting, memristors, and ultrafast spin switches in spintronics have recently been designed using MHPs. Despite the promise of the material, many questions remain regarding the nature and mobility of charge carriers in MHPs, which require further understanding.
Researchers from the University of shanghai for science and technology, in collaboration with Qingdao institute of bioenergy and bioprocess technology, Shanghai University, Shanghai institute of technical physics, Shanghai Jiao Tong University, and Lomonosov Moscow State University, now report photoinduced large polaron transport and dynamics in organic-inorganic hybrid lead halide perovskite with terahertz probes.
The researchers experimentally identify the photocarriers-optical phonon coupling in CH3NH3PbI3 (MAPbI3) polycrystalline grains, by using optical-pump and terahertz-electromagnetic probe spectroscopy. The photoinduced charge carrier, together with the surrounding lattice distortion over several lattice constants, forms a quasi-particle - a polaron. Using the Drude-Smith-Lorentz model along with the Frӧhlich-type electron-phonon coupling, the researchers determine the effective mass and scattering parameters of photogenerated polaronic carriers. According to the polaron mass enhancement, the polycrystalline nature of the material, and the presence of defects, the large polaron mobility is calculated on the order of ~80 cm2V−1s−1.
Furthermore, the researchers reveal that the formation of large polarons in MAPbI3 protects the charge carriers from scattering with polycrystalline grain boundaries or defects and explains the long lifetime of photoconductivity. The findings provide insights into the polaronic nature of charge carriers in MAPbI3 materials, which is relevant for both fundamental researches and device applications. The results are published in the journal Light: Science & Applications.
####
For more information, please click here
Contacts:
Media Contact
Yaobiao Li
Light Publishing Center, Changchun Institute of Optics, Fine Mechanics And Physics, CAS
Office: 86-431-861-76851
Expert Contact
Yan Peng
University of Shanghai for Science and Technology, China
Copyright © Light Publishing Center, Changchun Institute of Optics, Fine Mechanics And Physics, CAS
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Generating power where seawater and river water meet July 22nd, 2022
First electric nanomotor made from DNA material: Synthetic rotary motors at the nanoscale perform mechanical work July 22nd, 2022
Display technology/LEDs/SS Lighting/OLEDs
‘Life-like’ lasers can self-organise, adapt their structure, and cooperate July 15th, 2022
A solution to perovskite solar cell scalability problems April 22nd, 2022
Perovskites
“Workhorse” of photovoltaics combined with perovskite in tandem for the first time February 25th, 2022
Memristors
Artificial neurons go quantum with photonic circuits: Quantum memristor as missing link between artificial intelligence and quantum computing March 25th, 2022
New brain-like computing device simulates human learning: Researchers conditioned device to learn by association, like Pavlov's dog April 30th, 2021
Govt.-Legislation/Regulation/Funding/Policy
UNC Charlotte-led team invents new anticoagulant platform, offering hope for advances for heart surgery, dialysis, other procedures July 15th, 2022
Strain-sensing smart skin ready to deploy: Nanotube-embedded coating detects threats from wear and tear in large structures July 15th, 2022
Crystal phase engineering offers glimpse of future potential, researchers say July 15th, 2022
Possible Futures
Generating power where seawater and river water meet July 22nd, 2022
First electric nanomotor made from DNA material: Synthetic rotary motors at the nanoscale perform mechanical work July 22nd, 2022
Spintronics
Magnet-free chiral nanowires for spintronic devices March 18th, 2022
NGI advances graphene spintronics as 1D contacts improve mobility in nano-scale devices February 11th, 2022
Terahertz light-driven spin-lattice control: A new potential path to faster and more efficient data storage January 7th, 2022
Chip Technology
Buckyballs on gold are less exotic than graphene July 22nd, 2022
Quantum computer works with more than zero and one: Quantum digits unlock more computational power with fewer quantum particles July 22nd, 2022
Optical computing/Photonic computing
Deep-ultraviolet nonlinear optical crystals: Concept development and materials discovery July 8th, 2022
Efficiently processing high-quality periodic nanostructures with ultrafast laser July 1st, 2022
Discoveries
HKU physicists found signatures of highly entangled quantum matter July 22nd, 2022
Buckyballs on gold are less exotic than graphene July 22nd, 2022
Announcements
Quantum computer works with more than zero and one: Quantum digits unlock more computational power with fewer quantum particles July 22nd, 2022
Generating power where seawater and river water meet July 22nd, 2022
First electric nanomotor made from DNA material: Synthetic rotary motors at the nanoscale perform mechanical work July 22nd, 2022
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
Buckyballs on gold are less exotic than graphene July 22nd, 2022
Quantum computer works with more than zero and one: Quantum digits unlock more computational power with fewer quantum particles July 22nd, 2022
Generating power where seawater and river water meet July 22nd, 2022
Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records
UNC Charlotte-led team invents new anticoagulant platform, offering hope for advances for heart surgery, dialysis, other procedures July 15th, 2022
Luisier wins SNSF Advanced Grant to develop simulation tools for nanoscale devices July 8th, 2022
Solving the solar energy storage problem with rechargeable batteries that can convert and store energy at once June 24th, 2022
Solar/Photovoltaic
Key in increasing efficiency of next-generation solar cell, found in ‘light absorption capacity’! July 1st, 2022
Solving the solar energy storage problem with rechargeable batteries that can convert and store energy at once June 24th, 2022
USTC found a pathway to high-quality ZnSe quantum wires April 8th, 2022
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |