Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Copper doping enables safer, cost-effective hydrogen peroxide production

To produce safer, more economic and environmental hydrogen peroxide, an international research team turned to copper.

CREDIT
Nano Research
To produce safer, more economic and environmental hydrogen peroxide, an international research team turned to copper. CREDIT Nano Research

Abstract:
Hydrogen peroxide, the common household antiseptic used to clean cuts and scrapes, can also power space shuttles. While the version sold in pharmacies is far less concentrated than what is used in industry, the mere reduction of two hydrogen and two oxygen atoms into water and an extra oxygen can produce big results. The compound’s production is costly, though, requiring expensive metals to trigger the necessary chemical reactions that, when left unchecked, can produce unintentional explosions.

Copper doping enables safer, cost-effective hydrogen peroxide production

Beijing, China | Posted on February 11th, 2022

To produce safer, more economic and environmental hydrogen peroxide, an international research team turned to copper. The common metal helped reduce the number of manufacturing steps, making the resulting hydrogen peroxide more stable, efficient and cost-effective. They published their work on Jan. 11 in Nano Research.



Hydrogen peroxide is considered a high-value oxidant — a substance that can accept electrons from other substances, according to paper author Qian Liu, associate professor at Chengdu University’s Institute for Advanced Study. It is traditionally produced through a multi-step process in which an expensive metal, such as palladium, electrochemically reacts with a chemical compound containing hydrogen and oxygen to reduce the oxygen’s electrons by four to produce hydrogen peroxide and unwanted organic waste.



“The four-electron reduction process generates hydrogen peroxide and water — there is competition between the two processes,” Liu said. “As such, in the process of designing and preparing catalysts, we need to satisfy a two-electron reaction process to selectively produce hydrogen peroxide as much as possible to reduce unnecessary energy loss.”



The researchers opted to use titanium dioxide as an abundant, non-toxic and stable catalyst, but need to enhance it to achieve a two-electron reaction process.

“We doped the titanium dioxide with copper to naturally increase oxygen vacancy concentration, leading to improved electronic conductivity and better generation of hydrogen peroxide,” said paper author Shihai Yan, associate professor, College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University.



Copper serves as a heteroatom, which allows the researchers to manipulate the electronic structure of titanium dioxide. This enhanced catalyst can then create new atomic vacancies in the reduction compounds, encouraging one product over another. For example, when electrochemically reducing molecular hydrogen and oxygen, the addition of copper helps create more spots for oxygen to bond with hydrogen to produce hydrogen peroxide. Instead of a competition for the constituents to become water or hydrogen peroxide, the latter gets a boost, while the rest burns off as gas. When the process is contained in liquid, that’s a relatively harmless side effect.



“Two-electron electroreduction of oxygen into hydrogen peroxide in an aqueous environment provides a safe, sustainable and energy-saving method for on-demand production,” said Xuping Sun, professor, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China



“Copper-doped titanium dioxide exhibits a significantly improved selectivity of up to 91.2% for hydrogen peroxide, meaning that most of components reduce into the desired product. Moreover, it also shows a larger yield and good stability.”



Next, the researchers plan to design and synthesize copper-doped titanium dioxide catalysts against practical requirements to achieve large-scale industrial production.



“This study provides a new route to adjust the electronic structure of metal oxide by heteroatom doping as high efficiency electrocatalysts for oxygen reduction reaction to produce hydrogen peroxide,” Liu said.

Other contributors include co-first author Zhiqin Deng, co-first author Li Li, Yuchun Ren, Je Liang, Kai Dong and Tingshuai Li, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China; Chaoqun Ma, College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University; Yonglan Luo, Institute for Advanced Study, Chengdu University; Bo Tang, College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University; Yang Liu and Shuyan Gao, School of Materials Science and Engineering, Henan Normal University; and Abdullah M. Asin, Chemistry Department, Faculty of Science & Center of Excellence for Advanced Materials Research, King Abdulaziz University.



The National Natural Science Foundation of China supported this work.

####

About Tsinghua University Press
Established in 1980, belonging to Tsinghua University, Tsinghua University Press (TUP) is a leading comprehensive higher education and professional publisher in China. Committed to building a top-level global cultural brand, after 41 years of development, TUP has established an outstanding managerial system and enterprise structure, and delivered multimedia and multi-dimensional publications covering books, audio, video, electronic products, journals and digital publications. In addition, TUP actively carries out its strategic transformation from educational publishing to content development and service for teaching & learning and was named First-class National Publisher for achieving remarkable results.

About Nano Research



Nano Research is a peer-reviewed, international and interdisciplinary research journal, sponsored by Tsinghua University and the Chinese Chemical Society. It offers readers an attractive mix of authoritative and comprehensive reviews and original cutting-edge research papers. After more than 10 years of development, it has become one of the most influential academic journals in the nano field. Rapid review to ensure quick publication is a key feature of Nano Research. In 2020 InCites Journal Citation Reports, Nano Research has an Impact Factor of 8.897 (8.696, 5 years), the total cites reached 23150, and the number of highly cited papers reached 129, ranked among the top 2.5% of over 9000 academic journals, ranking first in China's international academic journals.

For more information, please click here

Contacts:
Yao Meng
Tsinghua University Press

Office: 86-108-347-0574

Copyright © Tsinghua University Press

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

JOURNAL

Related News Press

News and information

Two opposing approaches could give lithium-sulfur batteries a leg up over lithium-ion July 1st, 2022

Robot nose that can “smell” disease on your breath: Scientists develop diagnostic device for identifying compounds unique to particular diseases July 1st, 2022

Efficiently processing high-quality periodic nanostructures with ultrafast laser July 1st, 2022

Photonic synapses with low power consumption and high sensitivity are expected to integrate sensing-memory-preprocessing capabilities July 1st, 2022

Chemistry

Nanoscale chemically ordered-disordered domains in Fe3Pt alloys and their three-dimensional interface and lattice strain May 27th, 2022

Development of high-durability single-atomic catalyst using industrial humidifier: Identification of the operating mechanism of cobalt-based single-atomic catalyst and development of a mass production process. Utilization for catalyst development in various fields including fuel May 13th, 2022

Water processing: light helps degrade hormones: KIT researchers use polymer membranes coated with titanium dioxide for photocatalytic cleaning – results are reported in Nature Nanotechnology April 22nd, 2022

Flexible quantum sieve made at TU Dresden filters the fuel of Starship Enterprise April 15th, 2022

Govt.-Legislation/Regulation/Funding/Policy

Solving the solar energy storage problem with rechargeable batteries that can convert and store energy at once June 24th, 2022

Boron nitride nanotube fibers get real: Rice lab creates first heat-tolerant, stable fibers from wet-spinning process June 24th, 2022

UBCO researchers change the game when it comes to activity tracking: Flexible, highly sensitive motion device created by extrusion printing June 17th, 2022

University of Illinois Chicago joins Brookhaven Lab's Quantum Center June 10th, 2022

Possible Futures

Two opposing approaches could give lithium-sulfur batteries a leg up over lithium-ion July 1st, 2022

Robot nose that can “smell” disease on your breath: Scientists develop diagnostic device for identifying compounds unique to particular diseases July 1st, 2022

Efficiently processing high-quality periodic nanostructures with ultrafast laser July 1st, 2022

Photonic synapses with low power consumption and high sensitivity are expected to integrate sensing-memory-preprocessing capabilities July 1st, 2022

Materials/Metamaterials

New protocol for assessing the safety of nanomaterials July 1st, 2022

Nanotubes: a promising solution for advanced rubber cables with 60% less conductive filler June 1st, 2022

New route to build materials out of tiny particles May 27th, 2022

A one-stop shop for quantum sensing materials May 27th, 2022

Announcements

Two opposing approaches could give lithium-sulfur batteries a leg up over lithium-ion July 1st, 2022

Robot nose that can “smell” disease on your breath: Scientists develop diagnostic device for identifying compounds unique to particular diseases July 1st, 2022

Efficiently processing high-quality periodic nanostructures with ultrafast laser July 1st, 2022

Photonic synapses with low power consumption and high sensitivity are expected to integrate sensing-memory-preprocessing capabilities July 1st, 2022

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Two opposing approaches could give lithium-sulfur batteries a leg up over lithium-ion July 1st, 2022

Robot nose that can “smell” disease on your breath: Scientists develop diagnostic device for identifying compounds unique to particular diseases July 1st, 2022

Efficiently processing high-quality periodic nanostructures with ultrafast laser July 1st, 2022

Photonic synapses with low power consumption and high sensitivity are expected to integrate sensing-memory-preprocessing capabilities July 1st, 2022

Aerospace/Space

Boron nitride nanotube fibers get real: Rice lab creates first heat-tolerant, stable fibers from wet-spinning process June 24th, 2022

National Space Society Helps Fund Expanding Frontier’s Brownsville Summer Entrepreneur Academy: National Space Society and Club for the Future to Support Youth Development Program in South Texas June 24th, 2022

University of Strathclyde and National University of Singapore to co-ordinate satellite quantum communications May 13th, 2022

Lightening up the nanoscale long-wavelength optoelectronics May 13th, 2022

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project