Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Researchers realize ultra-high precision search for exotic interactions

Abstract:
The standard model is currently recognized as the most successful theory for studying particles and their interactions. However, it still fails to account for some important astronomy observations, such as the existence of dark matter and dark energy. Physicists generally believe that there are new particles beyond the standard model, which transmit new interactions between standard model particles. Due to the weak effect of exotic interaction, searching for exotic interactions is extremely challenging, and it is urgent to explore new methods to improve the experimental sensitivity.

Researchers realize ultra-high precision search for exotic interactions

Hefei, China | Posted on December 3rd, 2021

In a study published in Science Advances, the research team led by Prof. PENG Xinhua from University of Science and Technology of China of the Chinese Academy of Sciences, collaborating with Prof. Dmitry Budker from Helmholtz Institution, realized ultra-high precision search of exotic spin- and velocity- dependent interactions beyond the standard model, and amplified the magnetic field signal of exotic interactions at least two orders of magnitude and applied the technique to the investigation of exotic velocity-interactions based on their newly developed quantum spin-based amplifier.

In this study, researchers rotated a high-density Bi4Ge3O12 (BGO) crystal at high speed to induce the interaction between the BGO crystal and the xenon nucleus in the spin-based amplifier. This exotic interaction is equivalent to generating an alternating oscillating magnetic field on the nucleus, so the measurement of the exotic interaction can be converted into a magnetic field detection. The quantum spin-based amplifier can amplify the magnetic field to be measured at ultra-low noise levels, which greatly improved the sensitivity of the exotic interaction search.

Given the possible interference of technical noise, researchers took advantage of the velocity dependence of the exotic interaction to effectively eliminate the interference signals such as vibration and classical magnetic field.

They found no evidence of the existence of new particles in the search area, and thus proposed a new class of bosons-nucleus coupling constraint, which was at least two orders of magnitude bigger than that of the previous international optimal constraint.

This study demonstrated the unique advantages of the spin-based amplifier to study new physics theories beyond the standard model.

####

For more information, please click here

Contacts:
Jane fan
University of Science and Technology of China

Copyright © University of Science and Technology of China (USTC)

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

ARTICLE TITLE

Related News Press

News and information

Bioengineered nanoparticles show promise for fibrinogen manufacture, says Journal of Pharmaceutical Analysis study: Scientists engineer a nanoparticle polymer that can selectively bind to fibrinogen in human plasma, presenting a pathway for improved drug development January 14th, 2022

Photon recycling The key to high-efficiency perovskite solar cells January 14th, 2022

NSF funds Rice effort to measure, preserve quantum entanglement: Physicist Guido Pagano wins CAREER Award to develop tools for quantum computing January 14th, 2022

Tuning the bonds of paired quantum particles to create dissipationless flow: A tunable platform made from atomically thin materials may help researchers figure out how to create a robust quantum condensate that can flow without losing energy January 14th, 2022

Nanostructures get complex with electron equivalents: Nanoparticles of two different sizes break away from symmetrical designs January 14th, 2022

Physics

NSF funds Rice effort to measure, preserve quantum entanglement: Physicist Guido Pagano wins CAREER Award to develop tools for quantum computing January 14th, 2022

Tuning the bonds of paired quantum particles to create dissipationless flow: A tunable platform made from atomically thin materials may help researchers figure out how to create a robust quantum condensate that can flow without losing energy January 14th, 2022

Magnetism/Magnons

Tuning the bonds of paired quantum particles to create dissipationless flow: A tunable platform made from atomically thin materials may help researchers figure out how to create a robust quantum condensate that can flow without losing energy January 14th, 2022

Possible Futures

Towards high-performance organic optoelectronics with better crystallinity at semiconductor interface: Organic molecular interfaces with minimized structural mismatch and spontaneous electron transfer could open doors to high-efficiency optoelectronics January 14th, 2022

New photonic effect could speed drug development: Twisted semiconductor nanostructures convert red light into the twisted blue light in tiny volumes, which may help develop chiral drugs January 14th, 2022

UT Southwestern develops nanotherapeutic to ward off liver cancer January 14th, 2022

The free-energy principle explains the brain January 14th, 2022

Discoveries

Towards high-performance organic optoelectronics with better crystallinity at semiconductor interface: Organic molecular interfaces with minimized structural mismatch and spontaneous electron transfer could open doors to high-efficiency optoelectronics January 14th, 2022

Bioengineered nanoparticles show promise for fibrinogen manufacture, says Journal of Pharmaceutical Analysis study: Scientists engineer a nanoparticle polymer that can selectively bind to fibrinogen in human plasma, presenting a pathway for improved drug development January 14th, 2022

UT Southwestern develops nanotherapeutic to ward off liver cancer January 14th, 2022

The free-energy principle explains the brain January 14th, 2022

Announcements

Nanostructures get complex with electron equivalents: Nanoparticles of two different sizes break away from symmetrical designs January 14th, 2022

New photonic effect could speed drug development: Twisted semiconductor nanostructures convert red light into the twisted blue light in tiny volumes, which may help develop chiral drugs January 14th, 2022

UT Southwestern develops nanotherapeutic to ward off liver cancer January 14th, 2022

The free-energy principle explains the brain January 14th, 2022

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Photon recycling The key to high-efficiency perovskite solar cells January 14th, 2022

Tuning the bonds of paired quantum particles to create dissipationless flow: A tunable platform made from atomically thin materials may help researchers figure out how to create a robust quantum condensate that can flow without losing energy January 14th, 2022

Nanostructures get complex with electron equivalents: Nanoparticles of two different sizes break away from symmetrical designs January 14th, 2022

New photonic effect could speed drug development: Twisted semiconductor nanostructures convert red light into the twisted blue light in tiny volumes, which may help develop chiral drugs January 14th, 2022

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project