Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Developing high-performance MXene electrodes for next-generation powerful battery

Professor Zhi Chunyi from City University of Hong Kong and his team developed battery-like electrochemical Nb2CTx MXene electrodes, the black material inside the bottle. The silver “buttons” next to the bottle are batteries and at the back is the battery testing system.

CREDIT
City University of Hong Kong
Professor Zhi Chunyi from City University of Hong Kong and his team developed battery-like electrochemical Nb2CTx MXene electrodes, the black material inside the bottle. The silver “buttons” next to the bottle are batteries and at the back is the battery testing system. CREDIT City University of Hong Kong

Abstract:
Two-dimensional MXene has been a rising star in the energy world as they can store energy fast. But their unstable voltage output limits their applications. A collaborative research team led by scientists from City University of Hong Kong (CityU) has recently developed battery-like electrochemical Nb2CTx MXene electrodes with stable voltage output and high energy density by using a high-voltage scanning strategy. These latest findings may lead to a breakthrough in inventing the powerful battery of the next generation

Developing high-performance MXene electrodes for next-generation powerful battery

Hong Kong, China | Posted on November 19th, 2021

The research was jointly led by Professor Zhi Chunyi and Assistant Professor Dr Fan Jun from the Department of Materials Science and Engineering (MSE). Chair Professor Chen Furong from MSE also made a huge contribution to this research. The findings have been published in the scientific journal Joule, with the title of "Intrinsic voltage plateau of a Nb2CTx MXene cathode in an aqueous electrolyte induced by high-voltage-scanning".

Rising star in the energy world

MXene is a large family of two-dimensional nanomaterials, and has been the research focus of 2D materials in the energy storage field in the past decade. Because of the excellent electronic conductivity and large surface area, MXene features fast surficial redox and demonstrates high-rate energy storage.

But the biggest challenge of MXene energy storage is that all reported MXene electrodes lack a distinct discharge voltage plateau, which means they discharge with a rapidly descending output voltage. This shortcoming deteriorates Mxene's energy density and the stable energy output at desired high voltage regions, leading to limited energy density, usually less than 100 Wh kg-1.

To overcome the problem of unstable energy output, the research team led by CityU successfully developed battery-type Nb2CTx MXene electrodes. The team revealed the completely different electrochemical properties of the Nb2CTx MXene electrode by regulating the voltage windows from 2.0V to 2.4V. Under a high-voltage scanning up to 2.4V, the Nb2CTx MXene electrode showed typical battery-type features, different from the one under low voltage and other previously reported MXene systems.

Superior properties shown when using high-voltage scanning strategy

They discovered that the Nb2CTx/Zn battery could exhibit superior rate capability, durable cyclic performance, and high energy density under high-voltage scanning. More importantly, they succeeded in equipping MXene with a flat and stable discharge plateau of 1.55V to boost their energy densities. A record-level energy density among all aqueous Mxene electrodes of 146.7 Wh kg-1 with 63% contribution from the plateau region was also obtained. It broke the performance bottleneck of MXene devices.

"The absence of distinct voltage plateaus deteriorates MXene electrodes' capacities and energy densities which limit their potential as high-performance batteries. Our work successfully outlines an efficient route toward achieving high-energy-density MXene electrodes with distinct discharge voltage plateau through a high-voltage-scanning approach, which dramatically improves the electrochemical performance of MXene electrodes," said Professor Zhi.

Professor Zhi believes that the findings will inspire more researchers to explore the unrevealed electrochemical properties of the MXene family. "Two-dimensional MXene, featured by fast surficial redox and high-rate energy storage, have outstanding energy storage performances. With the stable voltage output and greatly enhanced energy density, MXene-based energy storage devices are one step closer to the goal of practical application," he said.

The corresponding authors of the paper are Professor Zhi and Dr Fan Jun. The first author is Mr Li Xinliang, a PhD student from MSE. Other co-authors include Professor Chen Furong from MSE, and 16 other researchers from 7 universities and research institutes. This research was supported by the National Key R&D Program of China.

####

For more information, please click here

Contacts:
P.K. Lee
City University of Hong Kong

Office: 852-344-28925

Copyright © City University of Hong Kong

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

ARTICLE TITLE

Related News Press

News and information

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

2 Dimensional Materials

First human trial shows ‘wonder’ material can be developed safely: A revolutionary nanomaterial with huge potential to tackle multiple global challenges could be developed further without acute risk to human health, research suggests February 16th, 2024

NRL discovers two-dimensional waveguides February 16th, 2024

$900,000 awarded to optimize graphene energy harvesting devices: The WoodNext Foundation's commitment to U of A physicist Paul Thibado will be used to develop sensor systems compatible with six different power sources January 12th, 2024

'Sudden death' of quantum fluctuations defies current theories of superconductivity: Study challenges the conventional wisdom of superconducting quantum transitions January 12th, 2024

Possible Futures

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

With VECSELs towards the quantum internet Fraunhofer: IAF achieves record output power with VECSEL for quantum frequency converters April 5th, 2024

Discoveries

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Announcements

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Two-dimensional bimetallic selenium-containing metal-organic frameworks and their calcinated derivatives as electrocatalysts for overall water splitting March 8th, 2024

Discovery of new Li ion conductor unlocks new direction for sustainable batteries: University of Liverpool researchers have discovered a new solid material that rapidly conducts lithium ions February 16th, 2024

A battery’s hopping ions remember where they’ve been: Seen in atomic detail, the seemingly smooth flow of ions through a battery’s electrolyte is surprisingly complicated February 16th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project