Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > A materials passport for greener batteries: Research project is investigating more environmentally friendly manufacturing and recycling processes

IDcycLIB-Logo
IDcycLIB-Logo

Abstract:
Efficient battery systems are increasingly being used in cars, tools, bicycles and as stationary energy storage units. At the same time, the requirements placed on these batteries continue to rise, not only in terms of energy density and cost, but also in terms of environmentally friendly manufacturing and recycling. Reusing batteries, in particular, is often difficult and not yet economically viable. Researchers are hoping to find solutions to these problems in a new project, which has received funding of over 4.5 million euros from the Federal Ministry of Education and Research (BMBF). One of the research partners is Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU): With a type of battery ‘passport’, chemists at the University aim to store the information required for recycling the battery directly inside the battery itself.

A materials passport for greener batteries: Research project is investigating more environmentally friendly manufacturing and recycling processes

Nuremberg, Germany | Posted on October 15th, 2021

The aim of the BMBF-funded project IDcycLIB (‘Innovationsplattform einer grünen, detektierbaren und direkt recycelbaren Lithium-Ionen-Batterie’ – Innovation platform for green, detectable and directly recyclable lithium-ion batteries’) is to manufacture recyclable and environmentally-friendly electrodes and subsequently regain materials from batteries via direct recycling. Until now, cell and battery concepts have not been designed to provide information about the chemicals in the cell, the condition of the battery or other characteristics that would enable them to be reused. This is precisely where the FAU research team led by Prof. Dr. Karl Mandel, Professorship of Inorganic Chemistry, would like to make its contribution to the research consortium: they are working to equip the cells with markers. These tiny markers are comprised of magnetic nano building blocks. When these markers are combined at varying ratios, a code is generated containing information, for example about the chemistry of the cell. This code varies from battery to battery depending on the materials they contain, and can act like a unique battery passport. The markers enable the constituent parts of batteries to be separated according to type using a process called electrohydraulic fragmentation, which another research team in the consortium is investigating in detail.

Another research topic of IDcycLIB is the subsequent selective separation of the valuable materials in batteries using automated centrifuge technology. If the active materials (the chemical substances) that store the energy in the battery are of the right quality, they are reused to make new batteries. If the quality is unsatisfactory, they can still be reused in batteries, but first they have to undergo further chemical and physical processing. A comparison of the electrochemical output of the cells manufactured from reclaimed and new materials will be used to demonstrate the efficiency of the IDcycLIB process. At the same time, the recycling process for residues from industrial manufacturing will be tested. As well as carrying out experiments, the project groups will develop software tools for evaluating sustainability and for controlling the digitally-recorded material flows.

About the research project
The IDcycLIB project consortium, reference number 03XP0393C, consists of ten funded partners and two associated partners, and has received a total of more than 6.9 million euros of funding, 4.5 million euros of which has been provided by the Federal Ministry of Education and Research (BMBF). In addition to FAU, the other members of the consortium include Fraunhofer Institute for Silicate Research ISC in Würzburg, with which FAU has started collaborating closely since Prof. Mandel was appointed to FAU. IDcycLIB is the first large joint project in which both institutions are involved.

####

For more information, please click here

Contacts:
Katrin Piecha
Friedrich-Alexander-Universität Erlangen-Nürnberg

Office: 49-913-185-70218
Expert Contact

Prof. Dr. Karl Mandel
Friedrich-Alexander Universität Erlangen-Nürnberg

Office: +49 9131 85 27396

Copyright © Friedrich-Alexander-Universität Erlangen-Nürnberg

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Further information about research into magnetic microparticles is available here:

Link to Professorship of Inorganic Chemistry:

Related News Press

News and information

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Possible Futures

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

With VECSELs towards the quantum internet Fraunhofer: IAF achieves record output power with VECSEL for quantum frequency converters April 5th, 2024

Announcements

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Two-dimensional bimetallic selenium-containing metal-organic frameworks and their calcinated derivatives as electrocatalysts for overall water splitting March 8th, 2024

Discovery of new Li ion conductor unlocks new direction for sustainable batteries: University of Liverpool researchers have discovered a new solid material that rapidly conducts lithium ions February 16th, 2024

A battery’s hopping ions remember where they’ve been: Seen in atomic detail, the seemingly smooth flow of ions through a battery’s electrolyte is surprisingly complicated February 16th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project