Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Lehigh University to lead ‘integrative partnerships’ for multi-university research collaboration in advanced optoelectronic material development: 5-year, $25 million NSF investment in IMOD, a revolutionary center for optoelectronic, quantum technologies

Elsa Reichmanis is Anderson Chair in Chemical Engineering in the Department of Chemical and Biomolecular Engineering at Lehigh University, a member of the National Academy of Engineering, and a Fellow of both the AIChE and of the National Academy of Inventors. Dr. Reichmanis also serves as an investigator with the National Science Foundation's recently-announced Center for Integration of Modern Optoelectronic Materials on Demand (IMOD), supporting the initiative as Director for Integrative Partnerships.

CREDIT
Lehigh University
Elsa Reichmanis is Anderson Chair in Chemical Engineering in the Department of Chemical and Biomolecular Engineering at Lehigh University, a member of the National Academy of Engineering, and a Fellow of both the AIChE and of the National Academy of Inventors. Dr. Reichmanis also serves as an investigator with the National Science Foundation's recently-announced Center for Integration of Modern Optoelectronic Materials on Demand (IMOD), supporting the initiative as Director for Integrative Partnerships. CREDIT Lehigh University

Abstract:
On September 9, the National Science Foundation announced it will fund a new endeavor to bring atomic-level precision to the devices and technologies that underpin much of modern life, and will transform fields like information technology in the decades to come. The five-year, $25 million Science and Technology Center grant will found the Center for Integration of Modern Optoelectronic Materials on Demand—or IMOD—a collaboration of scientists and engineers that spans 11 universities and a range of academic disciplines.

Lehigh University to lead ‘integrative partnerships’ for multi-university research collaboration in advanced optoelectronic material development: 5-year, $25 million NSF investment in IMOD, a revolutionary center for optoelectronic, quantum technologies

Bethlehem, PA | Posted on September 10th, 2021

“Our role in this endeavor is well aligned with Lehigh’s existing research strengths and activities,” says Elsa Reichmanis, Professor and Carl Robert Anderson Chair in Chemical Engineering at Lehigh, who serves as Lehigh’s lead investigator and as Director for Integrative Partnerships for IMOD. “This is very fertile ground for engagement and interdisciplinary collaboration among students and faculty, across campus, and across the network of researchers involved in the broader initiative.”

IMOD on a mission
IMOD research will center on new semiconductor materials and scalable manufacturing processes for new optoelectronic devices for applications ranging from displays and sensors to a technological revolution, under development today, that’s based on harnessing the principles of quantum mechanics.

“In the early days of electronics, a computer would fill an entire room. Now we all carry around smartphones that are millions of times more powerful in our pockets,” said IMOD Director David Ginger, the Alvin L. and Verla R. Kwiram Endowed Professor of Chemistry at the University of Washington. “Today, we see an opportunity for advances in materials and scalable manufacturing to do the same thing for optoelectronics: Can we take a quantum optics experiment that fills an entire room, and fit thousands—or even millions—of them on a chip, enabling a new revolution? Along the way we anticipate IMOD’s science will help with a few more familiar challenges, like improving the display of the cell phone you already have in your pocket so the battery lasts longer.”

In her role as Director for Integrative Partnerships, Reichmanis will build on her extensive experience in research at the interface of chemical engineering, chemistry, and materials science, spanning from fundamental concepts to technology development and implementation.

“My focus in this initiative is to work with IMOD partner institutions to establish a knowledge transfer program that prepares students to interact with industry, academia, and government partners, while encouraging entrepreneurship and spinoffs,” says Reichmanis, a Fellow of AIChE and of the National Academy of Inventors, as well as a member of the National Academy of Engineering. “We seek to accelerate the pace at which NSF research has translational impact and enhance the capabilities of a diverse, inclusive cohort of young and emerging researchers in conducting team-based science across professional environments.” Reichmanis will also lead the creation of an industrial partnership program to provide center participants with opportunities for direct engagement with students around research mentorship, internships, and other initiatives.

“NSF Science and Technology Centers are integrative not only in the sense that they span traditional academic disciplines, but also in the sense that they seek to benefit society by connecting academic research with industrial and governmental needs, while also educating a diverse STEM workforce,” says Ginger. “To this end, we’re extremely lucky to have had the support of an amazing list of external partners across the fields of industry, government and education.”

The 11 academic institutions that make up IMOD are the University of Washington; the University of Maryland, College Park; the University of Pennsylvania; Lehigh University; Columbia University; Georgia Institute of Technology; Northwestern University; the City College of New York; the University of Chicago; University of Colorado at Boulder; and the University of Maryland, Baltimore County.

A partial list of IMOD’s external partners includes companies such as Amazon, Applied Materials, Corning, Microsoft, Nanosys, and FOM Technologies, Inc., and government organizations such as the National Renewable Energy Laboratory, the Pacific Northwest National Laboratory, and the Washington State Department of Commerce.

For more about IMOD, read the official announcement from University of Washington.

About Elsa Reichmanis
Elsa Reichmanis is Anderson Chair in Chemical Engineering in the Department of Chemical and Biomolecular Engineering at Lehigh University. Prior to joining Lehigh, she was Professor and Pete Silas Chair in Chemical Engineering in the School of Chemical and Biomolecular Engineering at the Georgia Institute of Technology. She started her independent career at Bell Labs where she was Bell Labs Fellow and Director of the Materials Research Department. She received her PhD and BS degrees in chemistry from Syracuse University. Her research interests include the chemistry, properties, and application of materials technologies for photonic and electronic applications. She has had impact in the design of new imaging chemistries for advanced lithographic applications, and designed one of the first readily accessible and manufacturable polymers for advanced silicon device manufacturing using 193 nm lithography.

The Reichmanis research group is currently exploring polymeric and hybrid organic/inorganic materials chemistries for a range of device and electronic and sustainable energy applications. Her research, at the interface of chemical engineering, chemistry, materials science, optics, and electronics, spans from fundamental concept to technology development and implementation, with particular focus on polymeric and nanostructured materials for advanced technologies. Currently, efforts aim to identify fundamental parameters that will enable sub-nanometer scale dimensional control of organic, polymer and/or hybrid materials for applications including transistor devices, photovoltaics, and high-capacity energy storage.

Reichmanis was elected to the National Academy of Engineering in 1995 and has participated in several National Research Council (NRC) activities. She was an elected member of the Bureau of the International Union for Pure and Applied Chemistry (IUPAC); and has been active in the American Chemical Society throughout her career, having served as 2003 President of the Society. Elsa Reichmanis is the recipient of several awards, including the ACS Award in the Chemistry of Materials (2018), the ACS Award in Applied Polymer Science (1999), the ASM Engineering Materials Achievement Award (1996), and the Society of Chemical Industry’s Perkin Medal (2001). In other service, she is an Executive Editor of the ACS Journal Chemistry of Materials.

####

For more information, please click here

Contacts:
Chris Larkin
Lehigh University

Office: 610-758-4367
Lori Friedman
Lehigh University

Office: 610-758-3224

Copyright © Lehigh University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Faculty Profile: Elsa Reichmanis:

Web site: Department of Chemical and Biomolecular Engineering, Lehigh University:

NSF Award #2019444 STC: Center for Integration of Modern Optoelectronic Materials on Demand:

Related News Press

News and information

Optimized method to detect high-dimensional entanglement December 3rd, 2021

Scientists edge closer to probe that would inspect atherosclerotic plaques by forcing molecules to sound their presence December 3rd, 2021

Two-dimensional bipolar magnetic semiconductors with high Curie-temperature and electrically controllable spin polarization realized in exfoliated Cr(pyrazine)2 monolayers December 3rd, 2021

Review on the femtosecond laser precision micro/nano-engineering December 3rd, 2021

Govt.-Legislation/Regulation/Funding/Policy

Light speed advances: UD Prof. Tingyi Gu receives DARPA Young Faculty Award December 3rd, 2021

Immune system-stimulating nanoparticle could lead to more powerful vaccines: The potent new adjuvant could be used to help make vaccines against HIV and other infectious diseases December 3rd, 2021

How ultracold, superdense atoms become invisible: A new study confirms that as atoms are chilled and squeezed to extremes, their ability to scatter light is suppressed November 19th, 2021

Energizer atoms: JILA researchers find new way to keep atoms excited November 19th, 2021

Possible Futures

Researchers develop polyimide-mica nanocomposite film with high resistance to low earth orbit environments December 3rd, 2021

Researchers realize ultra-high precision search for exotic interactions December 3rd, 2021

Optimized method to detect high-dimensional entanglement December 3rd, 2021

Scientists edge closer to probe that would inspect atherosclerotic plaques by forcing molecules to sound their presence December 3rd, 2021

Optical computing/Photonic computing

Optimized method to detect high-dimensional entanglement December 3rd, 2021

Efficient photon upconversion at an organic semiconductor interface November 19th, 2021

Quantum Collaboration: Two UCSB scientists receive award to partner with Cisco’s new Quantum Research Team November 3rd, 2021

Ultrafast magnetism: heating magnets, freezing time: This study on Gadolinium is completing a series of experiments on Nickel, Iron-Nickel Alloys: The results are useful for developing ultrafast data storage devices October 15th, 2021

Discoveries

Researchers develop polyimide-mica nanocomposite film with high resistance to low earth orbit environments December 3rd, 2021

Researchers realize ultra-high precision search for exotic interactions December 3rd, 2021

Optimized method to detect high-dimensional entanglement December 3rd, 2021

Scientists edge closer to probe that would inspect atherosclerotic plaques by forcing molecules to sound their presence December 3rd, 2021

Announcements

Scientists edge closer to probe that would inspect atherosclerotic plaques by forcing molecules to sound their presence December 3rd, 2021

Two-dimensional bipolar magnetic semiconductors with high Curie-temperature and electrically controllable spin polarization realized in exfoliated Cr(pyrazine)2 monolayers December 3rd, 2021

Review on the femtosecond laser precision micro/nano-engineering December 3rd, 2021

Development of a single-process platform for the manufacture of graphene quantum dots: Precisely controls the bonding configuration of heteroatoms in graphene quantum dots through simple chemical processes. Practical application and commercialization in various fields is expected December 3rd, 2021

Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records

Light speed advances: UD Prof. Tingyi Gu receives DARPA Young Faculty Award December 3rd, 2021

Immune system-stimulating nanoparticle could lead to more powerful vaccines: The potent new adjuvant could be used to help make vaccines against HIV and other infectious diseases December 3rd, 2021

Scientists develop promising vaccine method against recurrent UTI November 19th, 2021

Cancer cells use ‘tiny tentacles’ to suppress the immune system: With the power of nanotechnology, investigators have discovered that cancer cells strengthen by forming nanotubes that they use to suck mitochondria out of immune cells November 19th, 2021

Photonics/Optics/Lasers

Optimized method to detect high-dimensional entanglement December 3rd, 2021

Scientists edge closer to probe that would inspect atherosclerotic plaques by forcing molecules to sound their presence December 3rd, 2021

Review on the femtosecond laser precision micro/nano-engineering December 3rd, 2021

Efficient photon upconversion at an organic semiconductor interface November 19th, 2021

Research partnerships

Scientists develop promising vaccine method against recurrent UTI November 19th, 2021

Quantum brain sensors could be crucial in spotting dementia after University of Sussex scientists find they can track brain waves: Sensors introduce important new method to spot bio-marker for brain diseases • Accurate timings of when brain signals fire demonstrated for first tim November 19th, 2021

Quantum Collaboration: Two UCSB scientists receive award to partner with Cisco’s new Quantum Research Team November 3rd, 2021

A simple way to get complex semiconductors to assemble themselves: Much like crystallizing rock candy from sugar syrup, the new method grows 2D perovskites precisely layered with other 2D materials to produce crystals with a wide range of electronic properties September 17th, 2021

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project