Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Stretching the capacity of flexible energy storage

Abstract:
Some electronics can bend, twist and stretch in wearable displays, biomedical applications and soft robots. While these devices’ circuits have become increasingly pliable, the batteries and supercapacitors that power them are still rigid. Now, researchers in ACS’ Nano Letters report a flexible supercapacitor with electrodes made of wrinkled titanium carbide — a type of MXene nanomaterial — that maintained its ability to store and release electronic charges after repetitive stretching.



Electronic devices that can bend, expand, and twist, like wearable displays and soft robots, have been around for a while. But the batteries and supercapacitors that power these flexible devices are still rigid. Now, researchers in ACS’ Nano Letters report a flexible supercapacitor with stretchable titanium carbide electrodes, allowing the power source to work even after repetitive stretching. "Crumpled MXene Electrodes for Ultrastretchable and High- Area-Capacitance Supercapacitors" — Desheng Kong, Ph.D. (corresponding author)

Stretching the capacity of flexible energy storage

Washington, DC | Posted on September 10th, 2021

One major challenge stretchable electronics must overcome is the stiff and inflexible nature of their energy storage components, batteries and supercapacitors. Supercapacitors that use electrodes made from transitional metal carbides, carbonitrides or nitrides, called MXenes, have desirable electrical properties for portable flexible devices, such as rapid charging and discharging. And the way that 2D MXenes can form multi-layered nanosheets provides a large surface area for energy storage when they’re used in electrodes. However, previous researchers have had to incorporate polymers and other nanomaterials to keep these types of electrodes from breaking when bent, which decreases their electrical storage capacity. So, Desheng Kong and colleagues wanted to see if deforming a pristine titanium carbide MXene film into accordion-like ridges would maintain the electrode’s electrical properties while adding flexibility and stretchability to a supercapacitor.

The researchers disintegrated titanium aluminum carbide powder into flakes with hydrofluoric acid and captured the layers of pure titanium carbide nanosheets as a roughly textured film on a filter. Then they placed the film on a piece of pre-stretched acrylic elastomer that was 800% its relaxed size. When the researchers released the polymer, it shrank to its original state, and the adhered nanosheets crumpled into accordion-like wrinkles.

In initial experiments, the team found the best electrode was made from a 3 µm-thick film that could be repetitively stretched and relaxed without being damaged and without modifying its ability to store an electrical charge. The team used this material to fabricate a supercapacitor by sandwiching a polyvinyl(alcohol)-sulfuric acid gel electrolyte between a pair of the stretchable titanium carbide electrodes. The device had a high energy capacity comparable to MXene-based supercapacitors developed by other researchers, but it also had extreme stretchability up to 800% without the nanosheets cracking. It maintained approximately 90% of its energy storage capacity after being stretched 1,000 times, or after being bent or twisted. The researchers say their supercapacitor’s excellent energy storage and electrical stability is attractive for stretchable energy storage devices and wearable electronic systems.

The authors acknowledge funding from the Key Research and Development Program of Jiangsu Provincial Department of Science and Technology of China, China Postdoctoral Science Foundation and High-Level Entrepreneurial and Innovative Talents Program of Jiangsu Province.

####

About American Chemical Society
The American Chemical Society (ACS) is a nonprofit organization chartered by the U.S. Congress. ACS’ mission is to advance the broader chemistry enterprise and its practitioners for the benefit of Earth and all its people. The Society is a global leader in promoting excellence in science education and providing access to chemistry-related information and research through its multiple research solutions, peer-reviewed journals, scientific conferences, eBooks and weekly news periodical Chemical & Engineering News. ACS journals are among the most cited, most trusted and most read within the scientific literature; however, ACS itself does not conduct chemical research. As a leader in scientific information solutions, its CAS division partners with global innovators to accelerate breakthroughs by curating, connecting and analyzing the world’s scientific knowledge. ACS’ main offices are in Washington, D.C., and Columbus, Ohio.

To automatically receive news releases from the American Chemical Society, contact

Follow us: Twitter | Facebook | LinkedIn | Instagram

For more information, please click here

Contacts:
Katie Cottingham
American Chemical Society

Office: 301-775-8455

Copyright © American Chemical Society

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

ARTICLE TITLE

Related News Press

News and information

Optimized method to detect high-dimensional entanglement December 3rd, 2021

Scientists edge closer to probe that would inspect atherosclerotic plaques by forcing molecules to sound their presence December 3rd, 2021

Two-dimensional bipolar magnetic semiconductors with high Curie-temperature and electrically controllable spin polarization realized in exfoliated Cr(pyrazine)2 monolayers December 3rd, 2021

Review on the femtosecond laser precision micro/nano-engineering December 3rd, 2021

Govt.-Legislation/Regulation/Funding/Policy

Light speed advances: UD Prof. Tingyi Gu receives DARPA Young Faculty Award December 3rd, 2021

Immune system-stimulating nanoparticle could lead to more powerful vaccines: The potent new adjuvant could be used to help make vaccines against HIV and other infectious diseases December 3rd, 2021

How ultracold, superdense atoms become invisible: A new study confirms that as atoms are chilled and squeezed to extremes, their ability to scatter light is suppressed November 19th, 2021

Energizer atoms: JILA researchers find new way to keep atoms excited November 19th, 2021

Possible Futures

Researchers develop polyimide-mica nanocomposite film with high resistance to low earth orbit environments December 3rd, 2021

Researchers realize ultra-high precision search for exotic interactions December 3rd, 2021

Optimized method to detect high-dimensional entanglement December 3rd, 2021

Scientists edge closer to probe that would inspect atherosclerotic plaques by forcing molecules to sound their presence December 3rd, 2021

Announcements

Scientists edge closer to probe that would inspect atherosclerotic plaques by forcing molecules to sound their presence December 3rd, 2021

Two-dimensional bipolar magnetic semiconductors with high Curie-temperature and electrically controllable spin polarization realized in exfoliated Cr(pyrazine)2 monolayers December 3rd, 2021

Review on the femtosecond laser precision micro/nano-engineering December 3rd, 2021

Development of a single-process platform for the manufacture of graphene quantum dots: Precisely controls the bonding configuration of heteroatoms in graphene quantum dots through simple chemical processes. Practical application and commercialization in various fields is expected December 3rd, 2021

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Using green tea as reducing reagent for the preparation of nanomaterials to synthesize ammonia December 3rd, 2021

Researchers develop polyimide-mica nanocomposite film with high resistance to low earth orbit environments December 3rd, 2021

Researchers realize ultra-high precision search for exotic interactions December 3rd, 2021

Development of a single-process platform for the manufacture of graphene quantum dots: Precisely controls the bonding configuration of heteroatoms in graphene quantum dots through simple chemical processes. Practical application and commercialization in various fields is expected December 3rd, 2021

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

Developing high-performance MXene electrodes for next-generation powerful battery November 19th, 2021

A materials passport for greener batteries: Research project is investigating more environmentally friendly manufacturing and recycling processes October 15th, 2021

New study shows how to power electronics using mechanical motion: Researchers develop a composite film that can be used in nanogenerators to generate electricity from mechanical motion October 1st, 2021

Polymer electrolytes for all-solid-state batteries without dead zones August 20th, 2021

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project