Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Controlling chaos in liquid crystals, gaining precision in autonomous technologies

New research shows that the movement in liquid crystals can be harnessed and directed, a step toward developing autonomous materials that can sense inputs, amplify signals, and even compute information. (Image from EurekAlert, courtesy of Verduzco Laboratory/Rice University)
New research shows that the movement in liquid crystals can be harnessed and directed, a step toward developing autonomous materials that can sense inputs, amplify signals, and even compute information. (Image from EurekAlert, courtesy of Verduzco Laboratory/Rice University)

Abstract:
Small defects within liquid crystals have the potential to host chemical reactions or to transport cargo, making them a potential candidate for exciting new technologies, like synthetic platforms for entirely new materials, drug delivery systems, and sensors.

Controlling chaos in liquid crystals, gaining precision in autonomous technologies

Chicago, IL | Posted on August 6th, 2021

Researchers at the University of Chicago’s Pritzker School of Molecular Engineering (PME) previously took a step toward these technologies by creating liquid crystals that could move autonomously.

Now, the same researchers have shown in simulations that they can precisely control the movement of defects within these active liquid crystals by changing the gradient of activity around them. In theory, this can be done by emitting pulses of light or changing the chemical composition in different areas of the system.

“Previously, the flows within these liquid crystal systems have been chaotic,” said Juan de Pablo, Liew Family Professor of Molecular Engineering, who led the research. “Now we have found a way to introduce gradients of activity within the system in a manner that confines and controls molecular motion, without having to use any barriers or obstacles.”

The results were published June 2 in Physical Review Letters. Other authors on the paper include postdoctoral researchers Rui Zhang, Ali Mozaffari, and Noe Atzin.

Controlling movements, creating patterns
In contrast to traditional liquids, liquid crystals exhibit a uniform molecular order. Such crystals have been used in optical technologies, like displays or communications, but they have the potential to be used in much more advanced technologies, such as capsules implanted in your body that can automatically release antibodies in response to a virus, or clothing that senses and captures toxic contaminants from the air.

One step toward creating such technologies is developing autonomous materials that can be controlled remotely. Previously, de Pablo and collaborators at UChicago and Stanford University developed autonomous liquid crystals by mixing in actin filaments — the same filaments that constitute a cell’s cytoskeleton — and “motor” proteins, the proteins that biological systems use to exert force on actin filaments. In this particular case, the proteins were engineered to be light-sensitive, which means their activity increases when exposed to light.

Now, conducting computer simulations, the researchers found that, in theory, they can control the motion of the liquid crystals in circular domains through changes in the gradient of high and low activity. By doing this, researchers found that not only could they change the dynamic states of the material, but they could also cause the defects to behave in certain periodic ways, such as bouncing, cruising, dancing, or maintaining a steady rotation. The results of these movements can be mapped as intricate geometric designs that are reminiscent of drawings created with a Spirograph.

“These beautiful trajectories show we can control with incredible precision the motion within these systems,” de Pablo said.

Understanding dynamics within cells
Next, the researchers are working with experimentalists to test whether they find the same results in physical systems. Understanding how to control such dynamic systems could be a step toward sensing technologies and could also give scientists a clue as to how to understand or control materials within similar systems, such as cells.

“Perhaps you could get tissue to grow a certain way or another, or get stem cells to differentiate into particular lineages by focusing on the topological defects that naturally arise in biological tissues,” de Pablo said. “Before, we didn’t know if this was possible.”

####

For more information, please click here

Contacts:
Mary Naset

Office: 773-834-4238

Copyright © University of Chicago

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Citation: “Defect Spirograph: Dynamical Behavior of Defects in Spatially Patterned Active Nematics” Mozaffari et. al., Physical Review Letters, June 2, 2021:

Related News Press

News and information

Engineering piezoelectricity and strain sensitivity in CdS to promote piezocatalytic hydrogen evolution May 13th, 2022

New nanomechanical oscillators with record-low loss May 13th, 2022

Small microring array enables large complex-valued matrix multiplication May 13th, 2022

Study finds nanomedicine targeting lymph nodes key to triple negative breast cancer treatment: In mice, nanomedicine can remodel the immune microenvironment in lymph node and tumor tissue for long-term remission and lung tumor elimination in this form of metastasized breast cance May 13th, 2022

Display technology/LEDs/SS Lighting/OLEDs

A solution to perovskite solar cell scalability problems April 22nd, 2022

Graphene-hBN breakthrough to spur new LEDs, quantum computing: Study uncovers first method for producing high-quality, wafer-scale, single-layer hexagonal boron nitride April 15th, 2022

Graphene crystals grow better under copper cover April 1st, 2022

Inorganic borophene liquid crystals: A superior new material for optoelectronic devices February 25th, 2022

Possible Futures

Engineering piezoelectricity and strain sensitivity in CdS to promote piezocatalytic hydrogen evolution May 13th, 2022

New nanomechanical oscillators with record-low loss May 13th, 2022

Small microring array enables large complex-valued matrix multiplication May 13th, 2022

Study finds nanomedicine targeting lymph nodes key to triple negative breast cancer treatment: In mice, nanomedicine can remodel the immune microenvironment in lymph node and tumor tissue for long-term remission and lung tumor elimination in this form of metastasized breast cance May 13th, 2022

Sensors

Going gentle on mechanical quantum systems: New experimental work establishes how quantum properties of mechanical quantum systems can be measured without destroying the quantum state May 13th, 2022

New nanomechanical oscillators with record-low loss May 13th, 2022

Self-propelled, endlessly programmable artificial cilia: Simple microstructures that bend, twist and perform stroke-like motions could be used for soft robotics, medical devices and more May 6th, 2022

The physics of a singing saw: Insights on centuries-old folk instrument is underpinned by a mathematical principle that may pave the way for high-quality resonators for sensing, electronics and more April 22nd, 2022

Discoveries

Going gentle on mechanical quantum systems: New experimental work establishes how quantum properties of mechanical quantum systems can be measured without destroying the quantum state May 13th, 2022

New nanomechanical oscillators with record-low loss May 13th, 2022

Small microring array enables large complex-valued matrix multiplication May 13th, 2022

Study finds nanomedicine targeting lymph nodes key to triple negative breast cancer treatment: In mice, nanomedicine can remodel the immune microenvironment in lymph node and tumor tissue for long-term remission and lung tumor elimination in this form of metastasized breast cance May 13th, 2022

Materials/Metamaterials

When a band falls flat: Searching for flatness in materials: International collaboration, led by DIPC and Princeton, creates a catalogue of materials that could impact quantum technologies April 1st, 2022

Studying atomic structure of aluminum alloys for manufacturing modern aircraft March 25th, 2022

Unexplored dimensions of porous metamaterials: Researchers unlock hidden potential in a long-studied group of materials March 18th, 2022

Copper doping enables safer, cost-effective hydrogen peroxide production February 11th, 2022

Announcements

Engineering piezoelectricity and strain sensitivity in CdS to promote piezocatalytic hydrogen evolution May 13th, 2022

New nanomechanical oscillators with record-low loss May 13th, 2022

Small microring array enables large complex-valued matrix multiplication May 13th, 2022

Study finds nanomedicine targeting lymph nodes key to triple negative breast cancer treatment: In mice, nanomedicine can remodel the immune microenvironment in lymph node and tumor tissue for long-term remission and lung tumor elimination in this form of metastasized breast cance May 13th, 2022

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Lightening up the nanoscale long-wavelength optoelectronics May 13th, 2022

On-Chip Photodetection: Two-dimensional material heterojunctions hetero-integration May 13th, 2022

Development of high-durability single-atomic catalyst using industrial humidifier: Identification of the operating mechanism of cobalt-based single-atomic catalyst and development of a mass production process. Utilization for catalyst development in various fields including fuel May 13th, 2022

Engineering piezoelectricity and strain sensitivity in CdS to promote piezocatalytic hydrogen evolution May 13th, 2022

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project