Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > An atom chip interferometer that could detect quantum gravity

This is Anupam Mazumdar, Professor of Theoretical Physics at the University of Groningen, co-author of the paper in Science Advances. He aims to develop a test for quantum gravity using atom chips.

CREDIT
University of Groningen
This is Anupam Mazumdar, Professor of Theoretical Physics at the University of Groningen, co-author of the paper in Science Advances. He aims to develop a test for quantum gravity using atom chips. CREDIT University of Groningen

Abstract:
Physicists in Israel have created a quantum interferometer on an atom chip. This device can be used to explore the fundamentals of quantum theory by studying the interference pattern between two beams of atoms. University of Groningen physicist, Anupam Mazumdar, describes how the device could be adapted to use mesoscopic particles instead of atoms. This modification would allow for expanded applications. A description of the device, and theoretical considerations concerning its application by Mazumdar, were published on 28 May in the journal Science Advances.

An atom chip interferometer that could detect quantum gravity

Groningen, the Netherlands | Posted on June 4th, 2021

The device which scientists from the Ben-Gurion University of the Negev created is a so-called Stern Gerlach Interferometer, which was first proposed one hundred years ago by German physicists Otto Stern and Walter Gerlach. Their original aim of creating an interferometer with freely propagating atoms exposed to gradients from macroscopic magnets has not been practically realized until now. 'Such experiments have been done using photons, but never with atoms', explains Anupam Mazumdar, Professor of Theoretical Physics at the University of Groningen and one of the co-authors of the article in Science Advances.

Diamonds The Israeli scientists, led by Professor Ron Folman, created an interferometer on an atom chip, which can confine and/or manipulate atoms. A beam of rubidium atoms is levitated over the chip using magnets. Magnetic gradients are used to split the beam according to the spin values of the individual atoms. Spin is a magnetic moment that can have two values, either up or down. The spin-up and spin-down atoms are separated by a magnetic gradient. Subsequently, the two divergent beams are brought together again and recombined. The spin values are then measured, and an interference pattern is formed. Spin is a quantum phenomenon, and throughout this interferometer, the opposing spins are entangled. This makes the interferometer sensitive to other quantum phenomena.

Mazumdar was not involved in the construction of the chip, but he contributed theoretical insights to the paper. Together with a number of his colleagues, he previously proposed an experiment to determine whether gravity is in fact a quantum phenomenon using entangled mesoscopic objects, namely tiny diamonds that can be brought in a state of quantum superposition. 'It would be possible to use these diamonds instead of the rubidium atoms on this interferometer', he explains. However, this process would be highly complex as the device, which is currently operated at room temperature, would need to be cooled down to around 1 Kelvin for the mesoscopic experiment.

Free fall If this is realized, two of these atom chips could free fall together (to neutralize external gravity), so that any interaction occurring between them would depend on the gravitational pull between the two chips. Mazumdar and his colleagues aim to determine whether quantum entanglement of the pair occurs during free fall, which would mean that the force of gravity between the diamonds is indeed a quantum phenomenon. Another application of this experiment is the detection of gravity waves; their deformation of space-time should be visible in the interference pattern.

The actual implementation of this experiment is still a long way off, but Mazumdar is very excited now that the interferometer has been created. 'It is already [a] quantum sensor, although we still have to work out exactly what it can detect. The experiment is like the first steps of a baby - now, we have to guide it to reach maturity.'

###

Reference: Yair Margalit, Or Dobkowski, Zhifan Zhou, Omer Amit, Yonathan Japha, Samuel Moukouri, Daniel Rohrlich, Anupam Mazumdar, Sougato Bose, Carsten Henkel and Ron Folman: Realization of a complete Stern-Gerlach interferometer: Toward a test of quantum gravity Science Advances, online 28 May 2021.

####

For more information, please click here

Contacts:
Rene Fransen


@univgroningen

Copyright © University of Groningen

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

RELATED JOURNAL ARTICLE:

Related News Press

Physics

Ultrasound at the nanometre scale reveals the nature of force September 17th, 2021

Ultrafast & ultrathin: new physics professor at TU Dresden makes mysterious quantum world visible September 10th, 2021

News and information

Getting to the root of tooth replantation challenges: Researchers from Tokyo Medical and Dental University (TMDU) report a delivery system that promotes healing in tooth replantation in rats September 17th, 2021

Researchers reveal multi-path mechanism in electrochemical CO2 reduction September 17th, 2021

Scientists demonstrate pathway to forerunner of nanotubes that could lead to widespread industrial fabrication September 17th, 2021

Silver nanoparticles boost performance of microbial fuel cells September 17th, 2021

Quantum Physics

Engineering various sources of loss provides new features for perfect light absorption: "Loss is ubiquitous in nature, and by better understanding it, we make it more useful" September 10th, 2021

Tapping into magnets to clamp down on noise in quantum information September 9th, 2021

Putting a new theory of many-particle quantum systems to the test: Experiments show that generalized hydrodynamics accurately simulates an out-of-equilibrium quantum system September 3rd, 2021

Possible Futures

New nano particles suppress resistance to cancer immunotherapy September 17th, 2021

New physics research reveals fresh complexities about electron behavior in materials September 17th, 2021

Scientists demonstrate pathway to forerunner of nanotubes that could lead to widespread industrial fabrication September 17th, 2021

Silver nanoparticles boost performance of microbial fuel cells September 17th, 2021

Discoveries

Ultrasound at the nanometre scale reveals the nature of force September 17th, 2021

A simple way to get complex semiconductors to assemble themselves: Much like crystallizing rock candy from sugar syrup, the new method grows 2D perovskites precisely layered with other 2D materials to produce crystals with a wide range of electronic properties September 17th, 2021

Getting to the root of tooth replantation challenges: Researchers from Tokyo Medical and Dental University (TMDU) report a delivery system that promotes healing in tooth replantation in rats September 17th, 2021

Researchers reveal multi-path mechanism in electrochemical CO2 reduction September 17th, 2021

Announcements

Getting to the root of tooth replantation challenges: Researchers from Tokyo Medical and Dental University (TMDU) report a delivery system that promotes healing in tooth replantation in rats September 17th, 2021

Researchers reveal multi-path mechanism in electrochemical CO2 reduction September 17th, 2021

Scientists demonstrate pathway to forerunner of nanotubes that could lead to widespread industrial fabrication September 17th, 2021

Silver nanoparticles boost performance of microbial fuel cells September 17th, 2021

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

New nano particles suppress resistance to cancer immunotherapy September 17th, 2021

New physics research reveals fresh complexities about electron behavior in materials September 17th, 2021

Good for groundwater bad for crops? Plastic particles release pollutants in upper soil layers: The environmental geoscientists at the Centre for Microbiology and Environmental Systems Science (CMESS) focused on a variety of parameters that contribute to plastic pollution in far September 17th, 2021

Ultrasound at the nanometre scale reveals the nature of force September 17th, 2021

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project