Home > Press > Experiment takes 'snapshots' of light, stops light, uses light to change properties of matter
Abstract:
Light travels at a speed of about 300,000,000 meters per second as light particles, photons, or equivalently as electromagnetic field waves. Experiments led by Hrvoje Petek, an R.K. Mellon professor in the Department of Physics and Astronomy examined ideas surrounding the origins of light, taking snapshots of light, stopping light and using it to change properties of matter.
Petek worked with students and collaborators Prof. Chen-Bin (Robin) Huang of the National Tsing Hua University in Taiwan, and Atsushi Kubo of the Tsukuba University of Japan on the experiments. Their findings were reported in the paper, "Plasmonic topological quasiparticle on the nanometre and femtosecond scales," which was published in the Dec. 24 issue of Nature magazine.
Petek credited graduate student Yanan Dai for his foresight and work in the process.
"The denouement of the research, however, is that Yanan, who performed the experiments and provided the theoretical modeling, demonstrated that he was educated far beyond his Professor's level and could interpret incisively the nanofemto topological properties and interactions of optical fields," he said.
The team performed an ultrafast microscopy experiment, where they trapped green light pulses of 20 fs (2x10-14 s) duration as composite light-electron density fluctuation waves, known as surface plasmon polaritons, and imaged their propagation on a silver surface at the speed of light. But they did this with a twist so that the light waves came together from two sides to form a light vortex where light waves appear to circulate about a stationary common core as a whirlwind of waves. They could generate a movie of how light waves churn on their nanometer (10-9 m) wavelength scale by imaging electrons that two light photons coming together cause to emit from the surface.
Gathering all such electrons with an electron microscope forms images where the light had passed, thus enabling the researchers to take its snapshot. Of course, if nothing is faster than light, one cannot take its snapshot, but by sending in two light pulses with their time separation advanced in 10-16 s steps, they could image how light waves come together causing their joint amplitude to rise and fall at fixed points in space forming a light vortex on the nano (10-9 m)-femto (10-15 s) scale.
Such light vortices form when you shine your red or green laser pointer onto a rough surface and see a speckle reflection, but they also have a cosmological significance. The light vortex fields can potentially cause transitions in the quantum mechanical phase order in solid state materials, such that the transformed material structure and its mirror image cannot be superimposed. In other words, the sense of the vortex rotation generates two materials that are topologically distinct.
Petek said such topological phase transitions are at the vanguard of physics research because they are thought to be responsible for some aspects of the structure of the Universe.
"Even the forces of nature including light, are thought to have emerged as symmetry breaking transitions of a primordial field. Thus, the ability to record the optical fields and plasmonic vortices in the experiment opens the way to perform ultrafast microscopy studies of related light-initiated phase transitions in condensed matter materials at the laboratory scale," he said.
####
For more information, please click here
Contacts:
Copyright © University of Pittsburgh
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Quantum Optimization: Computer scientist Yufei Ding receives NSF Early CAREER Award to advance efforts to improve quantum applications January 21st, 2021
Bringing Atoms to a Standstill: NIST Miniaturizes Laser Cooling January January 21st, 2021
Arrowhead Pharmaceuticals to Webcast Fiscal 2021 First Quarter Results January 20th, 2021
Plasmonics
USTC develops ultrahigh-performance plasmonic metal-oxide materials January 11th, 2021
Observation charge accumulation at nanocavity on plasmonic photocatalyst August 28th, 2020
Black (nano)gold combat climate change July 5th, 2019
Possible Futures
Quantum Optimization: Computer scientist Yufei Ding receives NSF Early CAREER Award to advance efforts to improve quantum applications January 21st, 2021
Bringing Atoms to a Standstill: NIST Miniaturizes Laser Cooling January January 21st, 2021
Arrowhead Pharmaceuticals to Webcast Fiscal 2021 First Quarter Results January 20th, 2021
Optical computing/Photonic computing
Bringing Atoms to a Standstill: NIST Miniaturizes Laser Cooling January January 21st, 2021
USTC develops ultrahigh-performance plasmonic metal-oxide materials January 11th, 2021
Stevens creates entangled photons 100 times more efficiently than previously possible: Ultra-bright photon source brings scalable quantum photonics within reach December 17th, 2020
Discoveries
Bringing Atoms to a Standstill: NIST Miniaturizes Laser Cooling January January 21st, 2021
Scientists synthetize new material for high-performance supercapacitors January 19th, 2021
Scientists' discovery is paving the way for novel ultrafast quantum computers January 15th, 2021
Announcements
Quantum Optimization: Computer scientist Yufei Ding receives NSF Early CAREER Award to advance efforts to improve quantum applications January 21st, 2021
Bringing Atoms to a Standstill: NIST Miniaturizes Laser Cooling January January 21st, 2021
Arrowhead Pharmaceuticals to Webcast Fiscal 2021 First Quarter Results January 20th, 2021
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
Bringing Atoms to a Standstill: NIST Miniaturizes Laser Cooling January January 21st, 2021
Scientists synthetize new material for high-performance supercapacitors January 19th, 2021
Photonics/Optics/Lasers
Bringing Atoms to a Standstill: NIST Miniaturizes Laser Cooling January January 21st, 2021
Controlling chemical catalysts with sculpted light January 15th, 2021
USTC develops ultrahigh-performance plasmonic metal-oxide materials January 11th, 2021
Stretching diamond for next-generation microelectronics January 5th, 2021
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |