Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Chemists describe a new form of ice

A novel hydrogen clathrate hydrate

CREDIT
Pavel Odinev / Skoltech
A novel hydrogen clathrate hydrate CREDIT Pavel Odinev / Skoltech

Abstract:
Scientists from the United States, China, and Russia have described the structure and properties of a novel hydrogen clathrate hydrate that forms at room temperature and relatively low pressure. Hydrogen hydrates are a potential solution for hydrogen storage and transportation, the most environmentally friendly fuel. The research was published in the journal Physical Review Letters.

Chemists describe a new form of ice

Moscow, Russia | Posted on December 25th, 2020

Ice is a highly complex substance with multiple polymorphic modifications that keep growing in number as scientists make discoveries. The physical properties of ice vary greatly, too: for example, hydrogen bonds become symmetric at high pressures, making it impossible to distinguish a single water molecule, whereas low pressures cause proton disorder, placing water molecules in many possible spatial orientations within the crystal structure. The ice around us, including snowflakes, is always proton-disordered. Ice can incorporate xenon, chlorine, carbon dioxide, or methane molecules and form gas hydrates, which often have a different structure from pure ice. The vast bulk of Earth's natural gas exists in the form of gas hydrates.

In their new study, chemists from the United States, China, and Russia focused on hydrogen hydrates. Gas hydrates hold great interest both for theoretical research and practical applications, such as hydrogen storage. If stored in its natural form, hydrogen poses an explosion hazard, whereas density is way too low even in compressed hydrogen. That is why scientists are looking for cost-effective hydrogen storage solutions.

"This is not the first time we turn to hydrogen hydrates. In our previous research, we predicted a novel hydrogen hydrate with 2 hydrogen molecules per water molecule. Unfortunately, this exceptional hydrate can only exist at pressures above 380,000 atmospheres, which is easy to achieve in the lab but is hardly usable in practical applications. Our new paper describes hydrates that contain less hydrogen but can exist at much lower pressures," Skoltech professor Artem R. Oganov says.

The crystal structure of hydrogen hydrates strongly depends on pressure. At low pressures, it has large cavities which, according to Oganov, resemble Chinese lanterns, each accommodating hydrogen molecules. As pressure increases, the structure becomes denser, with more hydrogen molecules packed into the crystal structure, although their degrees of freedom become significantly fewer.

In their research published in the Physical Review Letters, the scientists from the Carnegie Institution of Washington (USA) and the Institute of Solid State Physics in Hefei (China) led by Alexander F. Goncharov, a Professor at these two institutions, performed experiments to study the properties of various hydrogen hydrates and discovered an unusual hydrate with 3 water molecules per hydrogen molecule. The team led by Professor Oganov used the USPEX evolutionary algorithm developed by Oganov and his students to puzzle out the compound's structure responsible for its peculiar behavior. The researchers simulated the experiment's conditions and found a new structure very similar to the known proton-ordered C1 hydrate but differing from C1 in water molecule orientations. The team showed that proton disorder should occur at room temperature, thus explaining the X-ray diffraction and Raman spectrum data obtained in the experiment.

####

For more information, please click here

Contacts:
Ilyana Zolotareva

897-777-14699

Copyright © Skolkovo Institute of Science and Technology (Skoltech)

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

RELATED JOURNAL ARTICLE:

Related News Press

News and information

Wearable sensors that detect gas leaks April 19th, 2021

JEOL USA Welcomes New Managing Director, Hidetaka Sawada April 19th, 2021

FSU engineers improve performance of high-temperature superconductor wires April 16th, 2021

Arrowhead Pharmaceuticals to Webcast Fiscal 2021 Second Quarter Results April 16th, 2021

Arrowhead Pharmaceuticals to Webcast Fiscal 2021 Second Quarter Results April 16th, 2021

Physics

New nanoscale device for spin technology: Spin waves could unlock the next generation of computer technology, a new component allows physicists to control them April 16th, 2021

Atomic nuclei in the quantum swing: The extremely precise control of nuclear excitations opens up possibilities of ultra-precise atomic clocks and powerful nuclear batteries February 19th, 2021

D-Wave demonstrates performance advantage in quantum simulation of exotic magnetism: Fully-programmable annealing quantum computer demonstrates 3 million times speed-up over classical CPU in a practical application February 19th, 2021

Chemistry

TPU scientists offer new plasmon energy-based method to remove CO2 from atmosphere March 19th, 2021

Teamwork makes light shine ever brighter: Combined energy sources return a burst of photons from plasmonic gold nanogaps March 18th, 2021

Possible Futures

Wearable sensors that detect gas leaks April 19th, 2021

New nanoscale device for spin technology: Spin waves could unlock the next generation of computer technology, a new component allows physicists to control them April 16th, 2021

New tech builds ultralow-loss integrated photonic circuits April 16th, 2021

Oregon scientists create mechanism to precisely control soundwaves in metamaterials: Theoretical modeling shows that designer materials incorporating drum-like membranes allow precise stoppage and reversal of sound pulses April 16th, 2021

Discoveries

New nanoscale device for spin technology: Spin waves could unlock the next generation of computer technology, a new component allows physicists to control them April 16th, 2021

New tech builds ultralow-loss integrated photonic circuits April 16th, 2021

Oregon scientists create mechanism to precisely control soundwaves in metamaterials: Theoretical modeling shows that designer materials incorporating drum-like membranes allow precise stoppage and reversal of sound pulses April 16th, 2021

FSU engineers improve performance of high-temperature superconductor wires April 16th, 2021

Announcements

Wearable sensors that detect gas leaks April 19th, 2021

JEOL USA Welcomes New Managing Director, Hidetaka Sawada April 19th, 2021

FSU engineers improve performance of high-temperature superconductor wires April 16th, 2021

Arrowhead Pharmaceuticals to Webcast Fiscal 2021 Second Quarter Results April 16th, 2021

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Wearable sensors that detect gas leaks April 19th, 2021

New nanoscale device for spin technology: Spin waves could unlock the next generation of computer technology, a new component allows physicists to control them April 16th, 2021

New tech builds ultralow-loss integrated photonic circuits April 16th, 2021

Oregon scientists create mechanism to precisely control soundwaves in metamaterials: Theoretical modeling shows that designer materials incorporating drum-like membranes allow precise stoppage and reversal of sound pulses April 16th, 2021

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project