Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > New imaging method views soil carbon at near-atomic scales

Abstract:
The Earth's soils contain more than three times the amount of carbon than is found in the atmosphere, but the processes that bind carbon in the soil are still not well understood.

New imaging method views soil carbon at near-atomic scales

Ithaca, NY | Posted on December 25th, 2020

Improving such understanding may help researchers develop strategies for sequestering more carbon in soil, thereby keeping it out of the atmosphere where it combines with oxygen and acts as a greenhouse gas.

A new study describes a breakthrough method for imaging the physical and chemical interactions that sequester carbon in soil at near atomic scales, with some surprising results.

The study, "Organo-organic and Organo-mineral Interfaces in Soil at the Nanometer Scale," was published Nov. 30 in Nature Communications.

At that resolution, the researchers showed - for the first time - that soil carbon interacts with both minerals and other forms of carbon from organic materials, such as bacterial cell walls and microbial byproducts. Previous imaging research had only pointed to layered interactions between carbon and minerals in soils.

"If there is an overlooked mechanism that can help us retain more carbon in soils, then that will help our climate," said senior author Johannes Lehmann, the Liberty Hyde Bailey Professor in the School of Integrative Plant Science, Soil and Crop Sciences Section, in the College of Agriculture and Life Sciences. Angela Possinger Ph.D. '19, who was a graduate student in Lehmann's lab and is currently a postdoctoral researcher at Virginia Tech University, is the paper's first author.

Since the resolution of the new technique is near atomic scale, the researchers are not certain what compounds they are looking at, but they suspect the carbon found in soils is likely from metabolites produced by soil microbes and from microbial cell walls. "In all likelihood, this is a microbial graveyard," Lehmann said.

"We had an unexpected finding where we could see interfaces between different forms of carbon and not just between carbon and minerals," Possinger said. "We could start to look at those interfaces and try to understand something about those interactions."

The technique revealed layers of carbon around those organic interfaces. It also showed that nitrogen was an important player for facilitating the chemical interactions between both organic and mineral interfaces, Possinger said.

As a result, farmers may improve soil health and mitigate climate change through carbon sequestration by considering the form of nitrogen in soil amendments, she said.

While pursuing her doctorate, Possinger worked for years with Cornell physicists - including co-authors Lena Kourkoutis, associate professor of applied and engineering physics, and David Muller, the Samuel B. Eckert Professor of Engineering in Applied and Engineering Physics, and the co-director of the Kavli Institute at Cornell for Nanoscale Science - to help develop the multi-step method.

The researchers planned to use powerful electron microscopes to focus electron beams down to sub-atomic scales, but they found the electrons modify and damage loose and complex soil samples. As a result, they had to freeze the samples to around minus 180 degrees Celsius, which reduced the harmful effects from the beams.

"We had to develop a technique that essentially keeps the soil particles frozen throughout the process of making very thin slices to look at these tiny interfaces," Possinger said.

The beams could then be scanned across the sample to produce images of the structure and chemistry of a soil sample and its complex interfaces, Kourkoutis said.

"Our physics colleagues are leading the way globally to improve our ability to look very closely into material properties," Lehmann said. "Without such interdisciplinary collaboration, these breakthroughs are not possible.".

The new cryogenic electron microscopy and spectroscopy technique will allow researchers to probe a whole range of interfaces between soft and hard materials, including those that play roles in the function of batteries, fuel cells and electrolyzers, Kourkoutis said.

###

Coauthors include Michael Zachman Ph.D. '18, a former graduate student in Kourkoutis' lab; Akio Enders, a former researcher in Lehmann's lab; and Barnaby Levin Ph.D. '17, a former graduate student in Muller's lab.

The study was funded by the National Science Foundation, the Technical University of Munich Institute for Advanced Study, the Andrew W. Mellon Foundation and the Cornell College of Agriculture and Life Sciences Alumni Foundation.

####

For more information, please click here

Contacts:
Gillian Smith

607-254-6235

@cornell

Copyright © Cornell University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Imaging

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

First direct imaging of small noble gas clusters at room temperature: Novel opportunities in quantum technology and condensed matter physics opened by noble gas atoms confined between graphene layers January 12th, 2024

The USTC realizes In situ electron paramagnetic resonance spectroscopy using single nanodiamond sensors November 3rd, 2023

Observation of left and right at nanoscale with optical force October 6th, 2023

Govt.-Legislation/Regulation/Funding/Policy

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Possible Futures

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

With VECSELs towards the quantum internet Fraunhofer: IAF achieves record output power with VECSEL for quantum frequency converters April 5th, 2024

Discoveries

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Announcements

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Tools

First direct imaging of small noble gas clusters at room temperature: Novel opportunities in quantum technology and condensed matter physics opened by noble gas atoms confined between graphene layers January 12th, 2024

New laser setup probes metamaterial structures with ultrafast pulses: The technique could speed up the development of acoustic lenses, impact-resistant films, and other futuristic materials November 17th, 2023

Ferroelectrically modulate the Fermi level of graphene oxide to enhance SERS response November 3rd, 2023

The USTC realizes In situ electron paramagnetic resonance spectroscopy using single nanodiamond sensors November 3rd, 2023

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Two-dimensional bimetallic selenium-containing metal-organic frameworks and their calcinated derivatives as electrocatalysts for overall water splitting March 8th, 2024

Discovery of new Li ion conductor unlocks new direction for sustainable batteries: University of Liverpool researchers have discovered a new solid material that rapidly conducts lithium ions February 16th, 2024

A battery’s hopping ions remember where they’ve been: Seen in atomic detail, the seemingly smooth flow of ions through a battery’s electrolyte is surprisingly complicated February 16th, 2024

Fuel Cells

Current and Future Developments in Nanomaterials and Carbon Nanotubes: Applications of Nanomaterials in Energy Storage and Electronics October 28th, 2022

The “dense” potential of nanostructured superconductors: Scientists use unconventional spark plasma sintering method to prepare highly dense superconducting bulk magnesium diboride with a high current density October 7th, 2022

New iron catalyst could – finally! – make hydrogen fuel cells affordable: Study shows the low-cost catalyst can be a viable alternative to platinum that has stymied commercialization of the eco-friendly fuel for decades because it’s so expensive July 8th, 2022

Development of high-durability single-atomic catalyst using industrial humidifier: Identification of the operating mechanism of cobalt-based single-atomic catalyst and development of a mass production process. Utilization for catalyst development in various fields including fuel May 13th, 2022

Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

Discovery of new Li ion conductor unlocks new direction for sustainable batteries: University of Liverpool researchers have discovered a new solid material that rapidly conducts lithium ions February 16th, 2024

Catalytic combo converts CO2 to solid carbon nanofibers: Tandem electrocatalytic-thermocatalytic conversion could help offset emissions of potent greenhouse gas by locking carbon away in a useful material January 12th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project