Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Chemists synthesize 'flat' silicon compounds: The molecules generated at the University of Bonn are very stable despite their unusual spatial shape

3D representation of one of the new molecules. Silicate ions in tetrahedral arrangement can be seen in the spherical soap bubbles for comparison.

CREDIT
 Jens Rump / University of Bonn
3D representation of one of the new molecules. Silicate ions in tetrahedral arrangement can be seen in the spherical soap bubbles for comparison. CREDIT Jens Rump / University of Bonn

Abstract:
Chemists at the University of Bonn (Germany) have synthesized extremely unusual compounds. Their central building block is a silicon atom. Different from usual, however, is the arrangement of the four bonding partners of the atom, which are not in the form of a tetrahedron around it, but flat like a trapezoid. This arrangement is usually energetically extremely unfavorable, yet the molecules are very stable. Their properties are completely unknown so far; researchers now want to explore them. The results will be published in the Journal of the American Chemical Society, but are already available online.

Chemists synthesize 'flat' silicon compounds: The molecules generated at the University of Bonn are very stable despite their unusual spatial shape

Bonn, Germany | Posted on December 25th, 2020

Like its relative carbon, silicon generally forms four bonds with other atoms. When it does, the result is usually a tetrahedron. The silicon atom is located in the center, its bonding partners (the so-called ligands) at the tetrahedral corners. This arrangement is most favorable energetically. It therefore arises quasi automatically, just as a soap bubble is usually spherical.

Researchers led by Prof. Dr. Alexander C. Filippou of the Institute for Inorganic Chemistry at the University of Bonn have now constructed silicon-containing molecules that are as unusual as a cube-shaped soap bubble. In these, the four ligands do not form a tetrahedron, but a distorted square, a trapezoid. They lie in one plane together with the silicon. "Despite this, the compounds are so stable that they can be filled into bottles and stored for weeks without any problems," explains Dr. Priyabrata Ghana, a former doctoral student who has since moved to RWTH Aachen University.

Molecular exotics are unusually stable

The researchers themselves were surprised by this unusual stability. They discovered the reason by modeling the molecules on the computer. The ligands also form bonds with each other. In the process, they form a solid framework. This appears to be so strong that it completely prevents the trapezoidal arrangement from "snapping" into a tetrahedron. "Our computer calculations indicate that there is no structure for the molecules that would be more energetically favorable than the planar trapezoidal shape," emphasizes Jens Rump, a doctoral student at the Institute for Inorganic Chemistry.

The researchers grew crystals of the substances and then blasted them with X-rays. The X-ray light is scattered by the atoms and changes its direction. These deviations can therefore be used to calculate the spatial structure of the molecules in the crystal. Together with spectroscopic measurements, this method confirmed that ligands and silicon are indeed in the same plane in the new molecules.

Although the synthesis of the exotic compounds must be carried out under inert gas, it is otherwise comparatively simple. Producing the starting materials, on the other hand, is complex; one of them was first synthesized only just over ten years ago and has already been the source for the synthesis of several novel classes of silicon compounds.

The influence of the unusual structure on the properties of silicon, an important element for the electronics industry, is completely unclear at the moment. At any rate, for a long time it was considered completely impossible to produce such compounds.

####

For more information, please click here

Contacts:
Jens Rump (University of Bonn)

49-228-735-805

@unibonn

Copyright © University of Bonn

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Publication: Priyabrata Ghana, Jens Rump, Gregor Schnakenburg, Marius I. Arz and Alexander C. Filippou: Planar Tetracoordinated Silicon (ptSi): Room Temperature Stable Compounds Containing Anti-van't Hoff/Le Bel Silicon; Journal of the American Chemical Society, DOI: 10.1021/jacs.0c11628:

Related News Press

News and information

Built to last: New copolymer binder to extend the life of lithium ion batteries: Scientists develop a novel binder material that protects the graphite anode of Li-ion batteries from degradation even after 1700 cycles March 5th, 2021

A COSMIC approach to nanoscale science: Instrument at Berkeley Lab's Advanced Light Source achieves world-leading resolution of nanomaterials March 5th, 2021

Light in concert with force reveals how materials become harder when illuminated: When indented by a probe in darkness, wafers of some semiconductors are putty-like. When illuminated by light whose wavelength matches the band gap, they become hard, as electrons and holes freed by March 5th, 2021

Taking 2D materials for a spin: Scientists at the University of Tsukuba and the Institute of High Pressure Physics fabricate a novel molybdenum disulfide transistor and create an image of the spins of the electrons passing through which may open the way for new spintronic compute March 5th, 2021

Chemistry

Boosting the efficiency of carbon capture and conversion systems: New design could speed reaction rates in electrochemical systems for pulling carbon out of power plant emissions January 25th, 2021

Physicists propose a new theory to explain one dimensional quantum liquids formation January 15th, 2021

Controlling chemical catalysts with sculpted light January 15th, 2021

Chemists describe a new form of ice December 25th, 2020

Possible Futures

Built to last: New copolymer binder to extend the life of lithium ion batteries: Scientists develop a novel binder material that protects the graphite anode of Li-ion batteries from degradation even after 1700 cycles March 5th, 2021

A COSMIC approach to nanoscale science: Instrument at Berkeley Lab's Advanced Light Source achieves world-leading resolution of nanomaterials March 5th, 2021

Light in concert with force reveals how materials become harder when illuminated: When indented by a probe in darkness, wafers of some semiconductors are putty-like. When illuminated by light whose wavelength matches the band gap, they become hard, as electrons and holes freed by March 5th, 2021

Taking 2D materials for a spin: Scientists at the University of Tsukuba and the Institute of High Pressure Physics fabricate a novel molybdenum disulfide transistor and create an image of the spins of the electrons passing through which may open the way for new spintronic compute March 5th, 2021

Chip Technology

Light in concert with force reveals how materials become harder when illuminated: When indented by a probe in darkness, wafers of some semiconductors are putty-like. When illuminated by light whose wavelength matches the band gap, they become hard, as electrons and holes freed by March 5th, 2021

CEA-Leti Announces 16 Papers to Be Presented At Photonics West 2021 and a Virtual Workshop on March 25 March 3rd, 2021

Quantum quirk yields giant magnetic effect, where none should exist: Study opens window into the landscape of extreme topological matter March 1st, 2021

Engineering the boundary between 2D and 3D materials: Cutting-edge microscope helps reveal ways to control the electronic properties of atomically thin materials February 26th, 2021

Discoveries

Built to last: New copolymer binder to extend the life of lithium ion batteries: Scientists develop a novel binder material that protects the graphite anode of Li-ion batteries from degradation even after 1700 cycles March 5th, 2021

A COSMIC approach to nanoscale science: Instrument at Berkeley Lab's Advanced Light Source achieves world-leading resolution of nanomaterials March 5th, 2021

Light in concert with force reveals how materials become harder when illuminated: When indented by a probe in darkness, wafers of some semiconductors are putty-like. When illuminated by light whose wavelength matches the band gap, they become hard, as electrons and holes freed by March 5th, 2021

Taking 2D materials for a spin: Scientists at the University of Tsukuba and the Institute of High Pressure Physics fabricate a novel molybdenum disulfide transistor and create an image of the spins of the electrons passing through which may open the way for new spintronic compute March 5th, 2021

Announcements

Built to last: New copolymer binder to extend the life of lithium ion batteries: Scientists develop a novel binder material that protects the graphite anode of Li-ion batteries from degradation even after 1700 cycles March 5th, 2021

A COSMIC approach to nanoscale science: Instrument at Berkeley Lab's Advanced Light Source achieves world-leading resolution of nanomaterials March 5th, 2021

Light in concert with force reveals how materials become harder when illuminated: When indented by a probe in darkness, wafers of some semiconductors are putty-like. When illuminated by light whose wavelength matches the band gap, they become hard, as electrons and holes freed by March 5th, 2021

Taking 2D materials for a spin: Scientists at the University of Tsukuba and the Institute of High Pressure Physics fabricate a novel molybdenum disulfide transistor and create an image of the spins of the electrons passing through which may open the way for new spintronic compute March 5th, 2021

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Built to last: New copolymer binder to extend the life of lithium ion batteries: Scientists develop a novel binder material that protects the graphite anode of Li-ion batteries from degradation even after 1700 cycles March 5th, 2021

A COSMIC approach to nanoscale science: Instrument at Berkeley Lab's Advanced Light Source achieves world-leading resolution of nanomaterials March 5th, 2021

Light in concert with force reveals how materials become harder when illuminated: When indented by a probe in darkness, wafers of some semiconductors are putty-like. When illuminated by light whose wavelength matches the band gap, they become hard, as electrons and holes freed by March 5th, 2021

Taking 2D materials for a spin: Scientists at the University of Tsukuba and the Institute of High Pressure Physics fabricate a novel molybdenum disulfide transistor and create an image of the spins of the electrons passing through which may open the way for new spintronic compute March 5th, 2021

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project