Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Safe space: improving the "clean" methanol fuel cells using a protective carbon shell: Scientists encapsulate catalyst in a protective molecular sieve that selectively prevents undesired reactions in methanol fuel cells

If successfully commercialized, direct methanol fuel cells could replace the ubiquitous lithium-ion batteries in portable electronics thanks to their higher energy density

CREDIT
Unsplash
If successfully commercialized, direct methanol fuel cells could replace the ubiquitous lithium-ion batteries in portable electronics thanks to their higher energy density CREDIT Unsplash

Abstract:
Because of the many environmental problems caused by the use of fossil fuels, many scientists worldwide are focused on finding efficient alternatives. Though high hopes have been placed on hydrogen fuel cells, the reality is that transporting, storing, and using pure hydrogen comes with a huge added cost, making this process challenging with current technology. In contrast, methanol (CH3O3), a type of alcohol, does not require cold storage, has a higher energy density, and is easier and safer to transport. Thus, a transition into a methanol-based economy is a more realistic goal.

Safe space: improving the "clean" methanol fuel cells using a protective carbon shell: Scientists encapsulate catalyst in a protective molecular sieve that selectively prevents undesired reactions in methanol fuel cells

Incheon, Korea | Posted on December 4th, 2020

However, producing electricity from methanol at room temperature requires a direct methanol fuel cell (DMFC); a device that, so far, offers subpar performance. One of the main problems in DMFCs is the undesired "methanol oxidation" reaction, which occurs during methanol crossover," that is, when it passes from the anode to the cathode. This reaction results in the degradation of the platinum (Pt) catalyst that is essential for the cell's operation. Although certain strategies to mitigate this problem have been proposed, so far none has been good enough owing to cost or stability issues.

Fortunately, in a recent study published in ACS Applied Materials & Interfaces, a team of scientists from Korea has come up with a creative and effective solution. They fabricated--through a relatively simple procedure--a catalyst made of Pt nanoparticles encapsulated within a carbon shell. This shell forms an almost impenetrable carbon network with small openings caused by nitrogen defects. While oxygen, one of the main reactants in DMFCs, can reach the Pt catalyst through these "holes," methanol molecules are too big to pass through. "The carbon shell acts as a molecular sieve and provides selectivity toward the desired reactants, which can actually reach the catalyst sites. This prevents the undesirable reaction of the Pt cores," explains Professor Oh Joong Kwon from Incheon National University, Korea, who led the study.

The scientists conducted various types of experiments to characterize the overall structure and composition of the prepared catalyst and proved that oxygen could make it through the carbon shell and methanol could not. They also found a straightforward way to tune the number of defects in the shell by simply changing the temperature during a heat treatment step. In subsequent experimental comparisons, their novel shelled catalyst outperformed commercial Pt catalysts and also offered much higher stability.

Prof Kwon has been working on improving fuel cell catalysts for the past 10 years, motivated by the many ways in which this technology could find its way into our daily lives. "DMFCs have a higher energy density than lithium-ion batteries and could therefore become alternative power sources for portable devices, such as laptops and smartphones," he remarks.

With the future of our planet on the line, switching to alternative fuels should be one of humanity's top goals, and this study is a remarkable step in the right direction.

###

####

About Incheon National University
Incheon National University (INU) is a comprehensive, student-focused university. It was founded in 1979 and given university status in 1988. One of the largest universities in South Korea, it houses nearly 14,000 students and 500 faculty members. In 2010, INU merged with Incheon City College to expand capacity and open more curricula. With its commitment to academic excellence and an unrelenting devotion to innovative research, INU offers its students real-world internship experiences. INU not only focuses on studying and learning but also strives to provide a supportive environment for students to follow their passion, grow, and, as their slogan says, be INspired. Website: http://www.inu.ac.kr/mbshome/mbs/inuengl/index.html

About the author

Professor Oh Joong Kwon received his PhD from the School of Chemical and Biological Engineering, Seoul National University in 2007 and a postdoctoral fellowship at the Research Center for Energy and Conversion Storage, Seoul National University. He was appointed as a full-time lecturer at the Department of Mechanical Engineering at Incheon National University in 2008. Then, he switched to the Department of Energy and Chemical Engineering at Incheon National University and was promoted to full professor in 2019. He has been continuously engaged in studies of fuel cell catalysts and electrochemical deposition as director of several research funds supported by the government and companies.

Website: https://ohjoongkwon.wixsite.com/eedl

For more information, please click here

Contacts:
Oh Joong Kwon

Copyright © Incheon National University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Reference

Related News Press

News and information

Quantum Optimization: Computer scientist Yufei Ding receives NSF Early CAREER Award to advance efforts to improve quantum applications January 21st, 2021

Bringing Atoms to a Standstill: NIST Miniaturizes Laser Cooling January January 21st, 2021

CEA-Leti Reports Machine-Learning Breakthrough That Opens Way to Edge Learning: Article in Nature Electronics Details Method that Takes Advantage of RRAM Non-Idealities To Create Intelligent Systems that Have Potential Medical-Diagnostic Applications January 20th, 2021

Arrowhead Pharmaceuticals to Webcast Fiscal 2021 First Quarter Results January 20th, 2021

Possible Futures

Quantum Optimization: Computer scientist Yufei Ding receives NSF Early CAREER Award to advance efforts to improve quantum applications January 21st, 2021

Bringing Atoms to a Standstill: NIST Miniaturizes Laser Cooling January January 21st, 2021

CEA-Leti Reports Machine-Learning Breakthrough That Opens Way to Edge Learning: Article in Nature Electronics Details Method that Takes Advantage of RRAM Non-Idealities To Create Intelligent Systems that Have Potential Medical-Diagnostic Applications January 20th, 2021

Arrowhead Pharmaceuticals to Webcast Fiscal 2021 First Quarter Results January 20th, 2021

Discoveries

Bringing Atoms to a Standstill: NIST Miniaturizes Laser Cooling January January 21st, 2021

CEA-Leti Reports Machine-Learning Breakthrough That Opens Way to Edge Learning: Article in Nature Electronics Details Method that Takes Advantage of RRAM Non-Idealities To Create Intelligent Systems that Have Potential Medical-Diagnostic Applications January 20th, 2021

Scientists synthetize new material for high-performance supercapacitors January 19th, 2021

Scientists' discovery is paving the way for novel ultrafast quantum computers January 15th, 2021

Announcements

Quantum Optimization: Computer scientist Yufei Ding receives NSF Early CAREER Award to advance efforts to improve quantum applications January 21st, 2021

Bringing Atoms to a Standstill: NIST Miniaturizes Laser Cooling January January 21st, 2021

CEA-Leti Reports Machine-Learning Breakthrough That Opens Way to Edge Learning: Article in Nature Electronics Details Method that Takes Advantage of RRAM Non-Idealities To Create Intelligent Systems that Have Potential Medical-Diagnostic Applications January 20th, 2021

Arrowhead Pharmaceuticals to Webcast Fiscal 2021 First Quarter Results January 20th, 2021

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Bringing Atoms to a Standstill: NIST Miniaturizes Laser Cooling January January 21st, 2021

Scientists synthetize new material for high-performance supercapacitors January 19th, 2021

Quantum computers to study the functioning of the molecules of life: A team of theoretical physicists from the University of Trento has shown that it is possible to use quantum computers to simulate processes of great biological importance, such as changes in the shape of protein January 15th, 2021

Keeping the costs of superconducting magnets down using ultrasound: Scientists show ultrasonication is a cost-effective approach to enhance the properties of magnesium diboride superconductors January 15th, 2021

Energy

USTC develops ultrahigh-performance plasmonic metal-oxide materials January 11th, 2021

Controlling the nanoscale structure of membranes is key for clean water, researchers find January 1st, 2021

Bionic idea boosts lithium-ion extraction January 1st, 2021

Record-setting thermoelectric figure of merit achieved for metal oxides December 29th, 2020

Automotive/Transportation

Scientists suggested a method to improve performance of methanol fuel cells December 25th, 2020

New class of cobalt-free cathodes could enhance energy density of next-gen lithium-ion batteries December 21st, 2020

GLOBALFOUNDRIES Global Technology Conference 2020 China to Spotlight Innovations Accelerating the Digital Future: An engaging virtual event of insightful discussions and networking opportunities with thought leaders on future innovations November 2nd, 2020

A quantum material-based diagnostic paint to sense problems before structural failure October 23rd, 2020

Fuel Cells

Scientists suggested a method to improve performance of methanol fuel cells December 25th, 2020

New imaging method views soil carbon at near-atomic scales December 25th, 2020

High-performance single-atom catalysts for high-temperature fuel cells: Individual Pt atoms participate in catalytic reaction to faciitate the electrode process by up to 10 times. Single-atom Pt catalysts are stable at 700 degrees Celsius and expected to stimulate the commerciali September 25th, 2020

Rescue operations become faster thanks to graphene nanotubes August 20th, 2020

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project