Home > Press > NIST sensor experts invent supercool mini thermometer
![]() |
Two of NIST's superconducting thermometers for measuring cryogenic temperatures are glued to the lower left and upper right of this amplifier. The miniature thermometers, made of niobium on a layer of silicon dioxide, measure the temperature of the amplifier or other device based on a frequency signal. CREDIT Wheeler/NIST |
Abstract:
Researchers at the National Institute of Standards and Technology (NIST) have invented a miniature thermometer with big potential applications such as monitoring the temperature of processor chips in superconductor-based quantum computers, which must stay cold to work properly.
NIST's superconducting thermometer measures temperatures below 1 Kelvin (minus 272.15 ?C or minus 457.87 ?F), down to 50 milliKelvin (mK) and potentially 5 mK. It is smaller, faster and more convenient than conventional cryogenic thermometers for chip-scale devices and could be mass produced. NIST researchers describe the design and operation in a new journal paper [https://aip.scitation.org/doi/10.1063/5.0029351].
Just 2.5 by 1.15 millimeters in size, the new thermometer can be embedded in or stuck to another cryogenic microwave device to measure its temperature when mounted on a chip. The researchers used the thermometer to demonstrate fast, accurate measurements of the heating of a superconducting microwave amplifier.
The technology is a spinoff of NIST's custom superconducting sensors for telescope cameras, specifically microwave detectors delivered for the BLAST balloon [https://sites.northwestern.edu/blast/] and [http://toltec.astro.umass.edu/].
"This was a fun idea that quickly grew into something very helpful," group leader Joel Ullom said. "The thermometer allows researchers to measure the temperature of a wide range of components in their test packages at very little cost and without introducing a large number of additional electrical connections. This has the potential to benefit researchers working in quantum computing or using low-temperature sensors in a wide range of fields."
The thermometer consists of a superconducting niobium resonator coated with silicon dioxide. The coating interacts with the resonator to shift the frequency at which it naturally vibrates. Scientists suspect this is due to atoms "tunneling" between two sites, a quantum-mechanical effect.
The NIST thermometer is based on a new application of the principle that the natural frequency of the resonator depends on the temperature. The thermometer maps changes in frequency, as measured by electronics, to a temperature. By contrast, conventional thermometers for sub-Kelvin temperatures are based on electrical resistance. They require wiring routed to room-temperature electronics, adding complexity and potentially causing heating and interference.
The NIST thermometer measures temperature in about 5 milliseconds (thousandths of a second), much faster than most conventional resistive thermometers at about one-tenth of a second. The NIST thermometers are also easy to fabricate in only a single process step. They can be mass produced, with more than 1,200 fitting on a 3-inch (approximately 75-millimeter) silicon wafer.
####
For more information, please click here
Contacts:
Laura Ost
@NIST
Copyright © National Institute of Standards and Technology (NIST)
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related Links |
Related News Press |
News and information
A COSMIC approach to nanoscale science: Instrument at Berkeley Lab's Advanced Light Source achieves world-leading resolution of nanomaterials March 5th, 2021
Laboratories
A COSMIC approach to nanoscale science: Instrument at Berkeley Lab's Advanced Light Source achieves world-leading resolution of nanomaterials March 5th, 2021
Discovery could lead to self-propelled robots February 2nd, 2021
Quantum Physics
Quantum quirk yields giant magnetic effect, where none should exist: Study opens window into the landscape of extreme topological matter March 1st, 2021
Atomic nuclei in the quantum swing: The extremely precise control of nuclear excitations opens up possibilities of ultra-precise atomic clocks and powerful nuclear batteries February 19th, 2021
Govt.-Legislation/Regulation/Funding/Policy
A COSMIC approach to nanoscale science: Instrument at Berkeley Lab's Advanced Light Source achieves world-leading resolution of nanomaterials March 5th, 2021
Arrowhead Pharmaceuticals Files IND to Begin Phase 2b Study of ARO-APOC3 in Patients with Severe Hypertriglyceridemia March 2nd, 2021
Quantum quirk yields giant magnetic effect, where none should exist: Study opens window into the landscape of extreme topological matter March 1st, 2021
Bioinformatics tool accurately tracks synthetic: DNA Computer scientists show benefits of bioinformatics with PlasmidHawk February 26th, 2021
Possible Futures
A COSMIC approach to nanoscale science: Instrument at Berkeley Lab's Advanced Light Source achieves world-leading resolution of nanomaterials March 5th, 2021
Chip Technology
CEA-Leti Announces 16 Papers to Be Presented At Photonics West 2021 and a Virtual Workshop on March 25 March 3rd, 2021
Quantum quirk yields giant magnetic effect, where none should exist: Study opens window into the landscape of extreme topological matter March 1st, 2021
Engineering the boundary between 2D and 3D materials: Cutting-edge microscope helps reveal ways to control the electronic properties of atomically thin materials February 26th, 2021
Quantum Computing
CEA-Leti Announces 16 Papers to Be Presented At Photonics West 2021 and a Virtual Workshop on March 25 March 3rd, 2021
Quantum quirk yields giant magnetic effect, where none should exist: Study opens window into the landscape of extreme topological matter March 1st, 2021
Quantum computing: when ignorance is wanted February 19th, 2021
Discoveries
A COSMIC approach to nanoscale science: Instrument at Berkeley Lab's Advanced Light Source achieves world-leading resolution of nanomaterials March 5th, 2021
Announcements
A COSMIC approach to nanoscale science: Instrument at Berkeley Lab's Advanced Light Source achieves world-leading resolution of nanomaterials March 5th, 2021
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
A COSMIC approach to nanoscale science: Instrument at Berkeley Lab's Advanced Light Source achieves world-leading resolution of nanomaterials March 5th, 2021
Quantum nanoscience
Bringing Atoms to a Standstill: NIST Miniaturizes Laser Cooling January January 21st, 2021
Physicists propose a new theory to explain one dimensional quantum liquids formation January 15th, 2021
Microfabricated elastic diamonds improve material's electronic properties January 1st, 2021
Quantum wave in helium dimer filmed for the first time: Collaboration between Goethe University and the University of Oklahoma December 30th, 2020
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |