Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Timekeeping theory combines quantum clocks and Einstein's relativity: Research reveals new time dilation phenomenon

Quantum mechanics allows for a clock to move as if it were simultaneously traveling at two different speeds. New research finds that this leads to a correction in atomic clocks known as "quantum time dilation."

CREDIT
Petra Korlevic
Quantum mechanics allows for a clock to move as if it were simultaneously traveling at two different speeds. New research finds that this leads to a correction in atomic clocks known as "quantum time dilation." CREDIT Petra Korlevic

Abstract:
A phenomenon of quantum mechanics known as superposition can impact timekeeping in high-precision clocks, according to a theoretical study from Dartmouth College, Saint Anselm College and Santa Clara University.

Timekeeping theory combines quantum clocks and Einstein's relativity: Research reveals new time dilation phenomenon

Hanover, NH | Posted on October 23rd, 2020

Research describing the effect shows that superposition--the ability of an atom to exist in more than one state at the same time--leads to a correction in atomic clocks known as "quantum time dilation."

The research, published in the journal Nature Communications, takes into account quantum effects beyond Albert Einstein's theory of relativity to make a new prediction about the nature of time.

"Whenever we have developed better clocks, we've learned something new about the world," said Alexander Smith, an assistant professor of physics at Saint Anselm College and adjunct assistant professor at Dartmouth College, who led the research as a junior fellow in Dartmouth's Society of Fellows. "Quantum time dilation is a consequence of both quantum mechanics and Einstein's relativity, and thus offers a new possibility to test fundamental physics at their intersection."

In the early 1900s, Albert Einstein presented a revolutionary picture of space and time by showing that the time experienced by a clock depends on how fast it is moving -- as the speed of a clock increases, the rate at which it ticks decreases. This was a radical departure from Sir Isaac Newton's absolute notion of time.

Quantum mechanics, the theory of motion governing the atomic realm, allows for a clock to move as if it were simultaneously traveling at two different speeds: a quantum "superposition" of speeds. The research paper takes this possibility into account and provides a probabilistic theory of timekeeping, which led to the prediction of quantum time dilation.

To develop the new theory, the team combined modern techniques from quantum information science with a theory developed in the 1980s that explains how time might emerge out of a quantum theory of gravity.

"Physicists have sought to accommodate the dynamical nature of time in quantum theory for decades," said Mehdi Ahmadi, a lecturer at Santa Clara University who co-authored the study. "In our work, we predict corrections to relativistic time dilation which stem from the fact that the clocks used to measure this effect are quantum mechanical in nature."

In the same way that carbon dating relies on decaying atoms to determine the age of organic objects, the lifetime of an excited atom acts as a clock. If such an atom moves in a superposition of different speeds, then its lifetime will either increase or decrease depending on the nature of the superposition relative to an atom moving at a definite speed.

The correction to the atom's lifetime is so small that it would be impossible to measure in terms that make sense at the human scale. But the ability to account for this effect could enable a test of quantum time dilation using the most advanced atomic clocks.

Just as the utility of quantum mechanics for medical imaging, computing, and microscopy, might have been difficult to predict when that theory was being developed in the early 1900s, it is too early to imagine the full practical implications of quantum time dilation.

####

About Dartmouth College
Founded in 1769, Dartmouth is a member of the Ivy League and offers the world's premier liberal arts education, combining its deep commitment to outstanding undergraduate and graduate teaching with distinguished research and scholarship in the arts and sciences and its leading professional schools: the Geisel School of Medicine, the Guarini School of Graduate and Advanced Studies, Thayer School of Engineering and Tuck School of Business.

For more information, please click here

Contacts:
David Hirsch


@dartmouth

Copyright © Dartmouth College

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

RELATED JOURNAL ARTICLE:

Related News Press

Quantum Physics

Princeton-led team discovers unexpected quantum behavior in kagome lattice:Experiments suggest evidence for novel patterns of electronic charge distribution in a kagome material whose handedness can be manipulated with a magnetic field June 18th, 2021

News and information

Princeton-led team discovers unexpected quantum behavior in kagome lattice:Experiments suggest evidence for novel patterns of electronic charge distribution in a kagome material whose handedness can be manipulated with a magnetic field June 18th, 2021

Atomic-scale tailoring of graphene approaches macroscopic world June 18th, 2021

Compact quantum computer for server centers: Researchers build smallest quantum computer yet based on industry standards June 18th, 2021

Changing a 2D material's symmetry can unlock its promise: Jian Shi Research Group engineers material into promising optoelectronic June 18th, 2021

'Nanodecoy' therapy binds and neutralizes SARS-CoV-2 virus June 18th, 2021

Imaging

Atomic-scale tailoring of graphene approaches macroscopic world June 18th, 2021

Possible Futures

AI app could help diagnose HIV more accurately: Pioneering technology developed by UCL (University College London) and Africa Health Research Institute (AHRI) researchers could transform the ability to accurately interpret HIV test results, particularly in low- and middle-income June 18th, 2021

Atomic-scale tailoring of graphene approaches macroscopic world June 18th, 2021

Compact quantum computer for server centers: Researchers build smallest quantum computer yet based on industry standards June 18th, 2021

Changing a 2D material's symmetry can unlock its promise: Jian Shi Research Group engineers material into promising optoelectronic June 18th, 2021

Discoveries

AI app could help diagnose HIV more accurately: Pioneering technology developed by UCL (University College London) and Africa Health Research Institute (AHRI) researchers could transform the ability to accurately interpret HIV test results, particularly in low- and middle-income June 18th, 2021

Atomic-scale tailoring of graphene approaches macroscopic world June 18th, 2021

Compact quantum computer for server centers: Researchers build smallest quantum computer yet based on industry standards June 18th, 2021

Changing a 2D material's symmetry can unlock its promise: Jian Shi Research Group engineers material into promising optoelectronic June 18th, 2021

Announcements

Proliferation of electric vehicles based on high-performance, low-cost sodium-ion battery:A large-capacity anode material is developed for sodium-ion batteries by using low-cost silicone-based oil. This process, if commercialized, is expected to significantly reduce manufacturing June 18th, 2021

AI app could help diagnose HIV more accurately: Pioneering technology developed by UCL (University College London) and Africa Health Research Institute (AHRI) researchers could transform the ability to accurately interpret HIV test results, particularly in low- and middle-income June 18th, 2021

Compact quantum computer for server centers: Researchers build smallest quantum computer yet based on industry standards June 18th, 2021

Changing a 2D material's symmetry can unlock its promise: Jian Shi Research Group engineers material into promising optoelectronic June 18th, 2021

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Princeton-led team discovers unexpected quantum behavior in kagome lattice:Experiments suggest evidence for novel patterns of electronic charge distribution in a kagome material whose handedness can be manipulated with a magnetic field June 18th, 2021

AI app could help diagnose HIV more accurately: Pioneering technology developed by UCL (University College London) and Africa Health Research Institute (AHRI) researchers could transform the ability to accurately interpret HIV test results, particularly in low- and middle-income June 18th, 2021

Compact quantum computer for server centers: Researchers build smallest quantum computer yet based on industry standards June 18th, 2021

Changing a 2D material's symmetry can unlock its promise: Jian Shi Research Group engineers material into promising optoelectronic June 18th, 2021

Tools

Atomic-scale tailoring of graphene approaches macroscopic world June 18th, 2021

A novel nitrogen-doped dual-emission carbon dots as an effective fluorescent probe for ratiometric detection dopamine June 1st, 2021

Using the environment to control quantum devices: A deeper understanding of how the environment impacts quantum behaviour is bringing quantum devices one step closer to widespread adoption June 1st, 2021

Nanophotonics enhanced coverslip for phase imaging in biology May 14th, 2021

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project