Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Revealing the reason behind jet formation at the tip of laser optical fiber

The schematics of the jet formation mechanism.

CREDIT
Junnosuke Okajima, Tohoku University
The schematics of the jet formation mechanism. CREDIT Junnosuke Okajima, Tohoku University

Abstract:
When an optical fiber is immersed in liquid, a high temperature, high speed jet is discharged. Researchers expect this to be applied to medical treatment in the future. Now, a research team from Russia and Japan has explored this phenomenon further and revealed the reasons behind the jet formation.

Revealing the reason behind jet formation at the tip of laser optical fiber

Sendai City, Japan | Posted on October 16th, 2020

Lasers using a thin optical fiber and combined with an endoscope and catheter can be easily transported into deep areas of the body or inside blood vessels. Traditionally, affected areas or lesions are removed by generating heat inside the tissue through laser absorption - a process known as the photothermal effect.

Yet, hydrodynamical phenomena, such as microbubble formation or high-speed jet generation from the optical fiber, show immense medical promise.

The process of jet formation happens when the laser is irradiated to the water, causing the water to boil and a vapor bubble to form at the tip of the optical fiber. The vapor bubble grows until the laser energy absorbed in the liquid is consumed. Because of the surrounding cold liquid, condensation suddenly shrinks the vapor bubble.

Using a numerical simulation, Dr. Junosuke Okajima from Tohoku University's Institute of Fluid Science, along with his colleagues in Russia, set out to clarify the jet formation mechanism. Their simulation investigated the relationship between the bubble deformation and the induced flow field.

When the bubble shrinks, the flow toward the tip of the optical fiber is formed. The flow deforms the bubble into the cylindrical shape. This deformation induces the collision of flow in a radial direction. This collision generates the jet forward. As a result of collision and jet formation, the vortex is formed at the tip of the deformed bubble and it grows larger.

"We found the jet velocity depends on the relationship between the size of the vapor bubble just before the shrinking and the fiber radius," said Okajima. "We will continue to develop this study and try to find the optimum condition which maximizes the jet velocity and temperature, making further laser surgical techniques more effective and safer."

###

The project was part of the Russian Federation's Ministry of Science and Higher Education's Megagrant project, where Okajima serves as the leading scientist. For the current publication, he collaborated with Dr Roman Fursenko of the Siberian Branch of the Russian Academy of Sciences, professor Vladimir Chudnovskii, professor Sergey Minaev, and professor Mikhail Guzev, all from the Far Eastern Branch of the Russian Academy of Sciences.

####

For more information, please click here

Contacts:
Junnosuke Okajima


@TohokuUniPR

Copyright © Tohoku University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Related News Press

News and information

Researchers develop artificial building blocks of life March 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Two-dimensional bimetallic selenium-containing metal-organic frameworks and their calcinated derivatives as electrocatalysts for overall water splitting March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

Possible Futures

Two-dimensional bimetallic selenium-containing metal-organic frameworks and their calcinated derivatives as electrocatalysts for overall water splitting March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Discoveries

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

High-tech 'paint' could spare patients repeated surgeries March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Announcements

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Researchers develop artificial building blocks of life March 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records

Discovery of new Li ion conductor unlocks new direction for sustainable batteries: University of Liverpool researchers have discovered a new solid material that rapidly conducts lithium ions February 16th, 2024

$900,000 awarded to optimize graphene energy harvesting devices: The WoodNext Foundation's commitment to U of A physicist Paul Thibado will be used to develop sensor systems compatible with six different power sources January 12th, 2024

Catalytic combo converts CO2 to solid carbon nanofibers: Tandem electrocatalytic-thermocatalytic conversion could help offset emissions of potent greenhouse gas by locking carbon away in a useful material January 12th, 2024

'Sudden death' of quantum fluctuations defies current theories of superconductivity: Study challenges the conventional wisdom of superconducting quantum transitions January 12th, 2024

Photonics/Optics/Lasers

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Optically trapped quantum droplets of light can bind together to form macroscopic complexes March 8th, 2024

HKUST researchers develop new integration technique for efficient coupling of III-V and silicon February 16th, 2024

A battery’s hopping ions remember where they’ve been: Seen in atomic detail, the seemingly smooth flow of ions through a battery’s electrolyte is surprisingly complicated February 16th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project