Home > Press > Octopus-inspired sucker transfers thin, delicate tissue grafts and biosensors
![]() |
Postdoctoral researcher Byoungsoo Kim and professor Hyunjoon Kong led a team that developed an octopus-inspired device for transferring fragile, thin sheets of tissue or flexible electronics. Photo by L. Brian Stauffer |
Abstract:
Thin tissue grafts and flexible electronics have a host of applications for wound healing, regenerative medicine and biosensing. A new device inspired by an octopus’s sucker rapidly transfers delicate tissue or electronic sheets to the patient, overcoming a key barrier to clinical application, according to researchers at the University of Illinois at Urbana-Champaign and collaborators.
“For the last few decades, cell or tissue sheets have been increasingly used to treat injured or diseased tissues. A crucial aspect of tissue transplantation surgery, such as corneal tissue transplantation surgery, is surgical gripping and safe transplantation of soft tissues. However, handling these living substances remains a grand challenge because they are fragile and easily crumple when picking them up from the culture media,” said study leader Hyunjoon Kong, a professor of chemical and biomolecular engineering at Illinois.
Kong’s group, along with collaborators at Purdue University, the University of Illinois at Chicago, Chung-Ang University in South Korea, and the Korea Advanced Institute for Science and Technology, published their work in the journal Science Advances.
Current methods of transferring the sheets involve growing them on a temperature-sensitive soft polymer that, once transferred, shrinks and releases the thin film. However, this process takes 30-60 minutes to transfer a single sheet, requires skilled technicians and runs the risk of tearing or wrinkling, Kong said.
“During surgery, surgeons must minimize the risk of damage to soft tissues and transplant quickly, without contamination. Also, transfer of ultrathin materials without wrinkle or damage is another crucial aspect,” Kong said.
Seeking a way to quickly pick up and release the thin, delicate sheets of cells or electronics without damaging them, the researchers turned to the animal kingdom for inspiration. Seeing the way an octopus or squid can pick up both wet and dry objects of all shapes with small pressure changes in their muscle-powered suction cups, rather than a sticky chemical adhesive, gave the researchers an idea.
They designed a manipulator made of a temperature-responsive layer of soft hydrogel attached to an electric heater. To pick up a thin sheet, the researchers gently heat the hydrogel to shrink it, then press it to the sheet and turn off the heat. The hydrogel expands slightly, creating suction with the soft tissue or flexible electronic film so it can be lifted and transferred. Then they gently place the thin film on the target and turn the heater back on, shrinking the hydrogel and releasing the sheet.
The entire process takes about 10 seconds. See a video on YouTube.
Next, the researchers hope to integrate sensors into the manipulator, to further take advantage of their soft, bio-inspired design.
“For example, by integrating pressure sensors with the manipulator, it would be possible to monitor the deformation of target objects during contact and, in turn, adjust the suction force to a level at which materials retain their structural integrity and functionality,” Kong said. “By doing so, we can improve the safety and accuracy of handling these materials. In addition, we aim to examine therapeutic efficacy of cells and tissues transferred by the soft manipulator.”
The National Science Foundation, the National Institutes of Health, the Department of Defense Vision Research Program and the Jump Applied Research in Community Health through Engineering and Simulation endowment supported this work.
####
For more information, please click here
Contacts:
LIZ AHLBERG TOUCHSTONE
BIOMEDICAL SCIENCES EDITOR
217-244-1073
Hyunjoon Kong
(217) 333-1178
Copyright © University of Illinois at Urbana-Champaign
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related Links |
Related News Press |
News and information
Controlling chemical catalysts with sculpted light January 15th, 2021
Flexible Electronics
Engineers find antioxidants improve nanoscale visualization of polymers January 8th, 2021
Faraday fabrics? MXene-coated fabric could contain electronic interference in wearable devices December 11th, 2020
Stretchable micro-supercapacitors to self-power wearable devices December 11th, 2020
Videos/Movies
Quantum wave in helium dimer filmed for the first time: Collaboration between Goethe University and the University of Oklahoma December 30th, 2020
Pitt researchers create nanoscale slalom course for electrons: Professors from the Department of Physics and Astronomy have created a serpentine path for electrons November 27th, 2020
Possible Futures
Scientists' discovery is paving the way for novel ultrafast quantum computers January 15th, 2021
Physicists propose a new theory to explain one dimensional quantum liquids formation January 15th, 2021
Controlling chemical catalysts with sculpted light January 15th, 2021
Nanomedicine
Chemists invent shape-shifting nanomaterial with biomedical potential It converts from sheets to tubes and back in a controllable fashion January 13th, 2021
Single-dose COVID-19 vaccine triggers antibody response in mice January 8th, 2021
Nanocrystals that eradicate bacteria biofilm January 8th, 2021
Detecting COVID-19 antibodies in 10-12 seconds January 8th, 2021
Sensors
Nanomaterials researchers in Finland, the United States and China have created a color atlas for 466 unique varieties of single-walled carbon nanotubes. December 14th, 2020
An LED that can be integrated directly into computer chips: The advance could cut production costs and reduce the size of microelectronics for sensing and communication December 14th, 2020
Stretchable micro-supercapacitors to self-power wearable devices December 11th, 2020
Discoveries
Physicists propose a new theory to explain one dimensional quantum liquids formation January 15th, 2021
Announcements
Controlling chemical catalysts with sculpted light January 15th, 2021
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
Controlling chemical catalysts with sculpted light January 15th, 2021
Nanobiotechnology
Chemists invent shape-shifting nanomaterial with biomedical potential It converts from sheets to tubes and back in a controllable fashion January 13th, 2021
Nanoparticle vaccine for COVID-19 January 8th, 2021
Single-dose COVID-19 vaccine triggers antibody response in mice January 8th, 2021
Nanocrystals that eradicate bacteria biofilm January 8th, 2021
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |