Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > New design principles for spin-based quantum materials: Criteria for designing targeted quantum materials could support Internet of Things devices and other resource-intensive technologies

A crystal structure (left) and a visual model of the spin helix (right).
A crystal structure (left) and a visual model of the spin helix (right).

Abstract:
As our lives become increasingly intertwined with technology -- whether supporting communication while working remotely or streaming our favorite show -- so too does our reliance on the data these devices create. Data centers supporting these technology ecosystems produce a significant carbon footprint -- and consume 200 terawatt hours of energy each year, greater than the annual energy consumption of Iran. To balance ecological concerns yet meet growing demand, advances in microelectronic processors -- the backbone of many Internet of Things (IoT) devices and data hubs -- must be efficient and environmentally friendly.

New design principles for spin-based quantum materials: Criteria for designing targeted quantum materials could support Internet of Things devices and other resource-intensive technologies

Evanston, IL | Posted on September 20th, 2020

Northwestern University materials scientists have developed new design principles that could help spur development of future quantum materials used to advance (IoT) devices and other resource-intensive technologies while limiting ecological damage.

"New path-breaking materials and computing paradigms are required to make data centers more energy-lean in the future," said James Rondinelli, professor of materials science and engineering and the Morris E. Fine Professor in Materials and Manufacturing at the McCormick School of Engineering, who led the research.

The study marks an important step in Rondinelli's efforts to create new materials that are non-volatile, energy efficient, and generate less heat -- important aspects of future ultrafast, low-power electronics and quantum computers that can help meet the world's growing demand for data.

Rather than certain classes of semiconductors using the electron's charge in transistors to power computing, solid-state spin-based materials utilize the electron's spin and have the potential to support low-energy memory devices. In particular, materials with a high-quality persistent spin texture (PST) can exhibit a long-lived persistent spin helix (PSH), which can be used to track or control the spin-based information in a transistor.

Although many spin-based materials already encode information using spins, that information can be corrupted as the spins propagate in the active portion of the transistor. The researchers' novel PST protects that spin information in helix form, making it a potential platform where ultralow energy and ultrafast spin-based logic and memory devices operate.

The research team used quantum-mechanical models and computational methods to develop a framework to identify and assess the spin textures in a group of non-centrosymmetric crystalline materials. The ability to control and optimize the spin lifetimes and transport properties in these materials is vital to realizing the future of quantum microelectronic devices that operate with low energy consumption.

"The limiting characteristic of spin-based computing is the difficulty in attaining both long-lived and fully controllable spins from conventional semiconductor and magnetic materials," Rondinelli said. "Our study will help future theoretical and experimental efforts aimed at controlling spins in otherwise non-magnetic materials to meet future scaling and economic demands."

Rondinelli's framework used microscopic effective models and group theory to identify three materials design criteria that would produce useful spin textures: carrier density, the number of electrons propagating through an effective magnetic field, Rashba anisotropy, the ratio between intrinsic spin-orbit coupling parameters of the materials, and momentum space occupation, the PST region active in the electronic band structure. These features were then assessed using quantum-mechanical simulations to discover high-performing PSHs in a range of oxide-based materials.

The researchers used these principles and numerical solutions to a series of differential spin-diffusion equations to assess the spin texture of each material and predict the spin lifetimes for the helix in the strong spin-orbit coupling limit. They also found they could adjust and improve the PST performance using atomic distortions at the picoscale. The group determined an optimal PST material, Sr3Hf2O7, which showed a substantially longer spin lifetime for the helix than in any previously reported material.

"Our approach provides a unique chemistry-agnostic strategy to discover, identify, and assess symmetry-protected persistent spin textures in quantum materials using intrinsic and extrinsic criteria," Rondinelli said. "We proposed a way to expand the number of space groups hosting a PST, which may serve as a reservoir from which to design future PST materials, and found yet another use for ferroelectric oxides -- compounds with a spontaneous electrical polarization. Our work also will help guide experimental efforts aimed at implementing the materials in real device structures."

###

A paper describing the work, titled "Discovery Principles and Materials for Symmetry-Protected Persistent Spin Textures with Long Spin Lifetimes," was published online on September 18 in the journal Matter. The research was supported by the Army Research Office.

####

For more information, please click here

Contacts:
Amanda Morris

847-467-6790

@northwesternu

Copyright © Northwestern University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

RELATED JOURNAL ARTICLE:

Related News Press

Quantum Physics

Physicists propose a new theory to explain one dimensional quantum liquids formation January 15th, 2021

Quantum chemistry

Physicists propose a new theory to explain one dimensional quantum liquids formation January 15th, 2021

News and information

Controlling chemical catalysts with sculpted light January 15th, 2021

Conductive nature in crystal structures revealed at magnification of 10 million times: University of Minnesota study opens up possibilities for new transparent materials that conduct electricity January 15th, 2021

Quantum computers to study the functioning of the molecules of life: A team of theoretical physicists from the University of Trento has shown that it is possible to use quantum computers to simulate processes of great biological importance, such as changes in the shape of protein January 15th, 2021

Keeping the costs of superconducting magnets down using ultrasound: Scientists show ultrasonication is a cost-effective approach to enhance the properties of magnesium diboride superconductors January 15th, 2021

Govt.-Legislation/Regulation/Funding/Policy

Controlling chemical catalysts with sculpted light January 15th, 2021

Conductive nature in crystal structures revealed at magnification of 10 million times: University of Minnesota study opens up possibilities for new transparent materials that conduct electricity January 15th, 2021

Researchers realize efficient generation of high-dimensional quantum teleportation January 14th, 2021

Chemists invent shape-shifting nanomaterial with biomedical potential It converts from sheets to tubes and back in a controllable fashion January 13th, 2021

Possible Futures

Scientists' discovery is paving the way for novel ultrafast quantum computers January 15th, 2021

Physicists propose a new theory to explain one dimensional quantum liquids formation January 15th, 2021

Controlling chemical catalysts with sculpted light January 15th, 2021

Conductive nature in crystal structures revealed at magnification of 10 million times: University of Minnesota study opens up possibilities for new transparent materials that conduct electricity January 15th, 2021

Chip Technology

Scientists' discovery is paving the way for novel ultrafast quantum computers January 15th, 2021

Conductive nature in crystal structures revealed at magnification of 10 million times: University of Minnesota study opens up possibilities for new transparent materials that conduct electricity January 15th, 2021

New way to control electrical charge in 2D materials: Put a flake on it January 15th, 2021

Engineers find antioxidants improve nanoscale visualization of polymers January 8th, 2021

Discoveries

Physicists propose a new theory to explain one dimensional quantum liquids formation January 15th, 2021

Conductive nature in crystal structures revealed at magnification of 10 million times: University of Minnesota study opens up possibilities for new transparent materials that conduct electricity January 15th, 2021

Quantum computers to study the functioning of the molecules of life: A team of theoretical physicists from the University of Trento has shown that it is possible to use quantum computers to simulate processes of great biological importance, such as changes in the shape of protein January 15th, 2021

Keeping the costs of superconducting magnets down using ultrasound: Scientists show ultrasonication is a cost-effective approach to enhance the properties of magnesium diboride superconductors January 15th, 2021

Materials/Metamaterials

Chemists invent shape-shifting nanomaterial with biomedical potential It converts from sheets to tubes and back in a controllable fashion January 13th, 2021

USTC develops ultrahigh-performance plasmonic metal-oxide materials January 11th, 2021

Stretching diamond for next-generation microelectronics January 5th, 2021

Microfabricated elastic diamonds improve material's electronic properties January 1st, 2021

Announcements

Controlling chemical catalysts with sculpted light January 15th, 2021

Conductive nature in crystal structures revealed at magnification of 10 million times: University of Minnesota study opens up possibilities for new transparent materials that conduct electricity January 15th, 2021

Quantum computers to study the functioning of the molecules of life: A team of theoretical physicists from the University of Trento has shown that it is possible to use quantum computers to simulate processes of great biological importance, such as changes in the shape of protein January 15th, 2021

Keeping the costs of superconducting magnets down using ultrasound: Scientists show ultrasonication is a cost-effective approach to enhance the properties of magnesium diboride superconductors January 15th, 2021

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Controlling chemical catalysts with sculpted light January 15th, 2021

Conductive nature in crystal structures revealed at magnification of 10 million times: University of Minnesota study opens up possibilities for new transparent materials that conduct electricity January 15th, 2021

Quantum computers to study the functioning of the molecules of life: A team of theoretical physicists from the University of Trento has shown that it is possible to use quantum computers to simulate processes of great biological importance, such as changes in the shape of protein January 15th, 2021

Keeping the costs of superconducting magnets down using ultrasound: Scientists show ultrasonication is a cost-effective approach to enhance the properties of magnesium diboride superconductors January 15th, 2021

Military

Stretching diamond for next-generation microelectronics January 5th, 2021

Spontaneous robot dances highlight a new kind of order in active matter January 1st, 2021

Discovery suggests new promise for nonsilicon computer transistors: Once deemed suitable only for high-speed communication systems, an alloy called InGaAs might one day rival silicon in high-performance computing December 9th, 2020

CEA-Leti to Build Quantum-Photonics Platform to Ensure Ultra-Secure Data for Finance, Energy, Defense and Other Industries : Project Will Build Demonstrators for Transmitting and Receiving Qubits and Focus on Integrating the Technology in a Unique Platform to Address Quantum Comp October 30th, 2020

Environment

Phytoplankton disturbed by nanoparticles: Due to its antibacterial properties, nanosilver is used in a wide range of products from textiles to cosmetics; but nanosilver if present at high concentrations also disrupts the metabolism of algae that are essential for the aquatic food November 27th, 2020

Flash graphene rocks strategy for plastic waste: Rice University lab detours potential environmental hazard into useful material October 30th, 2020

Nano-diamond self-charging batteries could disrupt energy as we know it August 25th, 2020

Highly sensitive dopamine detector uses 2D materials August 7th, 2020

Energy

USTC develops ultrahigh-performance plasmonic metal-oxide materials January 11th, 2021

Controlling the nanoscale structure of membranes is key for clean water, researchers find January 1st, 2021

Bionic idea boosts lithium-ion extraction January 1st, 2021

Record-setting thermoelectric figure of merit achieved for metal oxides December 29th, 2020

Quantum nanoscience

Physicists propose a new theory to explain one dimensional quantum liquids formation January 15th, 2021

Microfabricated elastic diamonds improve material's electronic properties January 1st, 2021

Quantum wave in helium dimer filmed for the first time: Collaboration between Goethe University and the University of Oklahoma December 30th, 2020

Theory describes quantum phenomenon in nanomaterials: Osaka City University scientists have developed mathematical formulas to describe the current and fluctuations of strongly correlated electrons in quantum dots. Their theoretical predictions could soon be tested experimentally December 25th, 2020

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project