Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Round nanoparticles improve quality factors of surface lattice resonances: Study

An energy flux propagates along a surface and bypasses the nanoparticle at SLR. The hemisphere shape introduces weaker perturbations than the rod shape, resulting in much lower loss and a much higher quality factor.

CREDIT
SIAT
An energy flux propagates along a surface and bypasses the nanoparticle at SLR. The hemisphere shape introduces weaker perturbations than the rod shape, resulting in much lower loss and a much higher quality factor. CREDIT SIAT

Abstract:
Plasmonic surface lattice resonances (SLRs) supported by metal nanoparticle arrays have many merits such as strong field enhancements extended over large volumes, as well as long lifetimes, narrow linewidths, angle-dependent dispersion, and a wide range of wavelength tunability.

Round nanoparticles improve quality factors of surface lattice resonances: Study

Beijing, China | Posted on August 28th, 2020

This study was published in Nature Photonics on August 10.

To reach atomic resolution with light has always been one of the ultimate goals in nano-optics. The advent of scanning near-field optical microscopy (SNOM) kindled hopes for the goal.

Prof. DONG and his colleagues successfully demonstrated sub-nanometer scale spatial resolution in the single-molecule Raman spectroscopy imaging with local enhancement effect of a nanocavity plasmon field in a study in 2013.

However, unlike the Raman scattering process, fluorescence will be quenched in the very immediate vicinity of metals which stops the resolution development of SNOM at around 10 nm.

The radiation properties (fluorescence) of molecules in the metal nanocavity are directly affected by the photon density of the nanocavity , and the photon density of the nanocavity is closely related to the structure of the probe tip. Therefore, it is the key to modify the structure of the probe and the electronic state of the molecules in the nanocavity to avoid the fluorescence quenching and achieve high-resolution photofluorescence imaging.

DONG's team further fine-tuned the plasmon nanocavity, especially in the fabrication and control of the atomic-level structure of the probe tip. They constructed an Ag tip apex with an atomistic protrusion and matched the nanocavity plasmon resonance with the effective energy of the incident laser and molecular luminescence.

Then, the researchers used an ultra-thin dielectric layer (three-atom-thick NaCl) to isolate the charge transfer between the nanocavity molecules and the metal substrate, achieving sub-nanometer resolution of the single-molecule photoluminescence imaging.

They found that with the probe approaching the molecule, even if their distance is less than 1 nm, the intensity of photoluminescence continues increasing monotonously. And the fluorescence quenching disappears completely.

Theoretical simulations showed that when the atomistic protrusion tip and the metal substrate form a plasmon nanocavity, the resonance response of the nanocavity plasmon and the lightning rod effect of the atomistic protrusion structure would have a synergistic effect. The synergistic effect generates a strong and highly localized electromagnetic field compressing the cavity mode volume to below 1 nm3, which greatly increases the localized photon density of states and the molecular radiation decay rate. These effects not only inhibit the fluorescence quenching, but also realize sub-nanometer-resolution photoluminescence imaging.

To achieve sub-nanometer spatial resolution, the size of the tip and the distance between the tip and the sample must be on the sub-nanometer scale.

The researchers further realized sub-molecular-resolved photoluminescence hyperspectral imaging with spectral information, and demonstrated the effects of local plasmon-exciton interaction on fluorescence intensity, peak position and peak width on the sub-nanometer scale.

This research achieved the long-awaited goal of using light to analyze the internal structure of molecules in SNOM, and provided a new technical method for detecting and modulating the localized environment of molecules and light-matter interactions on the sub-nanometer scale.

The reviewers of Nature Photonics say that this paper will be an important article in its field, which has guiding significance for carrying out ultra-sensitive spectroscopic microscopy research with atomic-scale light.

####

For more information, please click here

Contacts:
ZHANG Xiaomin

Copyright © Chinese Academy of Sciences Headquarters

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

RELATED JOURNAL ARTICLE:

Related News Press

News and information

Built to last: New copolymer binder to extend the life of lithium ion batteries: Scientists develop a novel binder material that protects the graphite anode of Li-ion batteries from degradation even after 1700 cycles March 5th, 2021

A COSMIC approach to nanoscale science: Instrument at Berkeley Lab's Advanced Light Source achieves world-leading resolution of nanomaterials March 5th, 2021

Light in concert with force reveals how materials become harder when illuminated: When indented by a probe in darkness, wafers of some semiconductors are putty-like. When illuminated by light whose wavelength matches the band gap, they become hard, as electrons and holes freed by March 5th, 2021

Taking 2D materials for a spin: Scientists at the University of Tsukuba and the Institute of High Pressure Physics fabricate a novel molybdenum disulfide transistor and create an image of the spins of the electrons passing through which may open the way for new spintronic compute March 5th, 2021

Imaging

How photoblueing disturbs microscopy February 26th, 2021

Engineering the boundary between 2D and 3D materials: Cutting-edge microscope helps reveal ways to control the electronic properties of atomically thin materials February 26th, 2021

Novel Flexible Terahertz Camera Can Inspect Objects with Diverse Shapes February 17th, 2021

High-speed holographic fluorescence microscopy system with submicron resolution: The group has realized a scanless 3D imaging system and an algorithm for high-speed measurement January 29th, 2021

Possible Futures

Built to last: New copolymer binder to extend the life of lithium ion batteries: Scientists develop a novel binder material that protects the graphite anode of Li-ion batteries from degradation even after 1700 cycles March 5th, 2021

A COSMIC approach to nanoscale science: Instrument at Berkeley Lab's Advanced Light Source achieves world-leading resolution of nanomaterials March 5th, 2021

Light in concert with force reveals how materials become harder when illuminated: When indented by a probe in darkness, wafers of some semiconductors are putty-like. When illuminated by light whose wavelength matches the band gap, they become hard, as electrons and holes freed by March 5th, 2021

Taking 2D materials for a spin: Scientists at the University of Tsukuba and the Institute of High Pressure Physics fabricate a novel molybdenum disulfide transistor and create an image of the spins of the electrons passing through which may open the way for new spintronic compute March 5th, 2021

Optical computing/Photonic computing

New study investigates photonics for artificial intelligence and neuromorphic computing February 1st, 2021

Bringing Atoms to a Standstill: NIST Miniaturizes Laser Cooling January January 21st, 2021

USTC develops ultrahigh-performance plasmonic metal-oxide materials January 11th, 2021

Perfect transmission through barrier using sound: New study experimentally proved for the first time a century-old quantum theory that relativistic particles can pass through a barrier with 100% transmission December 29th, 2020

Discoveries

Built to last: New copolymer binder to extend the life of lithium ion batteries: Scientists develop a novel binder material that protects the graphite anode of Li-ion batteries from degradation even after 1700 cycles March 5th, 2021

A COSMIC approach to nanoscale science: Instrument at Berkeley Lab's Advanced Light Source achieves world-leading resolution of nanomaterials March 5th, 2021

Light in concert with force reveals how materials become harder when illuminated: When indented by a probe in darkness, wafers of some semiconductors are putty-like. When illuminated by light whose wavelength matches the band gap, they become hard, as electrons and holes freed by March 5th, 2021

Taking 2D materials for a spin: Scientists at the University of Tsukuba and the Institute of High Pressure Physics fabricate a novel molybdenum disulfide transistor and create an image of the spins of the electrons passing through which may open the way for new spintronic compute March 5th, 2021

Announcements

Built to last: New copolymer binder to extend the life of lithium ion batteries: Scientists develop a novel binder material that protects the graphite anode of Li-ion batteries from degradation even after 1700 cycles March 5th, 2021

A COSMIC approach to nanoscale science: Instrument at Berkeley Lab's Advanced Light Source achieves world-leading resolution of nanomaterials March 5th, 2021

Light in concert with force reveals how materials become harder when illuminated: When indented by a probe in darkness, wafers of some semiconductors are putty-like. When illuminated by light whose wavelength matches the band gap, they become hard, as electrons and holes freed by March 5th, 2021

Taking 2D materials for a spin: Scientists at the University of Tsukuba and the Institute of High Pressure Physics fabricate a novel molybdenum disulfide transistor and create an image of the spins of the electrons passing through which may open the way for new spintronic compute March 5th, 2021

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Built to last: New copolymer binder to extend the life of lithium ion batteries: Scientists develop a novel binder material that protects the graphite anode of Li-ion batteries from degradation even after 1700 cycles March 5th, 2021

A COSMIC approach to nanoscale science: Instrument at Berkeley Lab's Advanced Light Source achieves world-leading resolution of nanomaterials March 5th, 2021

Light in concert with force reveals how materials become harder when illuminated: When indented by a probe in darkness, wafers of some semiconductors are putty-like. When illuminated by light whose wavelength matches the band gap, they become hard, as electrons and holes freed by March 5th, 2021

Taking 2D materials for a spin: Scientists at the University of Tsukuba and the Institute of High Pressure Physics fabricate a novel molybdenum disulfide transistor and create an image of the spins of the electrons passing through which may open the way for new spintronic compute March 5th, 2021

Tools

From microsaws to nanodrills: laser pulses act as subtle machining tools: Industrial-grade materials processing on the sub-micron scale is enabled by spatially structured ultrashort laser pulses February 26th, 2021

Engineering the boundary between 2D and 3D materials: Cutting-edge microscope helps reveal ways to control the electronic properties of atomically thin materials February 26th, 2021

Novel Flexible Terahertz Camera Can Inspect Objects with Diverse Shapes February 17th, 2021

CEA Is the First Research Center to Acquire A Cryogenic Prober for Testing Quantum Bits February 10th, 2021

Photonics/Optics/Lasers

A COSMIC approach to nanoscale science: Instrument at Berkeley Lab's Advanced Light Source achieves world-leading resolution of nanomaterials March 5th, 2021

Light in concert with force reveals how materials become harder when illuminated: When indented by a probe in darkness, wafers of some semiconductors are putty-like. When illuminated by light whose wavelength matches the band gap, they become hard, as electrons and holes freed by March 5th, 2021

CEA-Leti Announces 16 Papers to Be Presented At Photonics West 2021 and a Virtual Workshop on March 25 March 3rd, 2021

From microsaws to nanodrills: laser pulses act as subtle machining tools: Industrial-grade materials processing on the sub-micron scale is enabled by spatially structured ultrashort laser pulses February 26th, 2021

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project