Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > A powder method for the high-efficacy measurement of electro-optic coefficients

Schematic illustration of the powder method using powder SHG measurement, IRRS, and Raman spectrum

CREDIT
©Science China Press
Schematic illustration of the powder method using powder SHG measurement, IRRS, and Raman spectrum CREDIT ©Science China Press

Abstract:
Electro-optic crystal shows great promise for extensive applications in laser, optoelectronics, and optical communication, such as high-speed E-O switch, modulator, deflector, laser mode-locking, photoetching, laser radar (LIDAR) and so on. With the prosperous development of Terahertz (THz) spectroscopy technique, E-O crystals are employed in this realm for generation and detection of the THz electromagnetic radiation. Although there are some commercial E-O crystals available in the market, further exploration of novel E-O crystals with superior properties is also in great demand for a variety of current applications. However, the discovering of novel electro-optic crystals is sporadic due to lack of theoretical method for the evaluation of E-O effect and the difficulties of large-sized crystal growth for electro-optic coefficient measurement. Hence, the strategy for exploration of novel E-O crystals should be improved.

A powder method for the high-efficacy measurement of electro-optic coefficients

Beijing, China | Posted on August 21st, 2020

Herein, to address such an issue, inspired by the well-known powder second harmonic generation (SHG) technique reported by Kurtz and Perry (J. Appl. Phys. 39, 3798 (1968). Times Cited: 4176) who open a highway for the exploration new NLO crystals, a high-efficacy evaluation method using accessible powder samples is proposed, in which second harmonic generation effect, infrared reflectance spectrum, and Raman spectrum are introduced to predict the magnitude of electro-optic coefficient. Particularly, the evaluation method is established on the material in powder form or small crystals in micron size, which can be easily obtained at the onset of experiment. Comparing to traditional method for the measurement of E-O coefficients with large-sized crystal which is difficult and time-consuming, the utilization of powders renders the exploring process to be more efficient.

The calculated electro-optic coefficients of numerous reported electro-optic crystals through this approach give universally agreement with the experimental values, evidencing the validity of strategy. Based on this method, CsLiMoO¬4 is screened as a novel electro-optic crystal and high-quality crystal is grown by the Czochralski technique for electro-optic coefficient measurement with half-wave voltage method, whose result is also comparable to the calculated value. Also, on account of the preferable calculated E-O coefficient and the relationship between E-O effect and macroscopic symmetry of crystal, CLM was selected as a potential E-O crystal. Consequently, this powder method for the evaluation of E-O crystals is not only significant for the further understanding of the E-O coefficient, but also have important implications for the high-efficacy screening of promising E-O crystals. The powder evaluation strategy presented in this work will pave a new avenue to explore promising electro-optic crystals efficiently.

####

About Science China Press
The National Science Review is the first comprehensive scholarly journal released in English in China that is aimed at linking the country's rapidly advancing community of scientists with the global frontiers of science and technology. The journal also aims to shine a worldwide spotlight on scientific research advances across China.

For more information, please click here

Contacts:
Ning Ye

Copyright © Science China Press

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

See the article:

Related News Press

News and information

Built to last: New copolymer binder to extend the life of lithium ion batteries: Scientists develop a novel binder material that protects the graphite anode of Li-ion batteries from degradation even after 1700 cycles March 5th, 2021

A COSMIC approach to nanoscale science: Instrument at Berkeley Lab's Advanced Light Source achieves world-leading resolution of nanomaterials March 5th, 2021

Light in concert with force reveals how materials become harder when illuminated: When indented by a probe in darkness, wafers of some semiconductors are putty-like. When illuminated by light whose wavelength matches the band gap, they become hard, as electrons and holes freed by March 5th, 2021

Taking 2D materials for a spin: Scientists at the University of Tsukuba and the Institute of High Pressure Physics fabricate a novel molybdenum disulfide transistor and create an image of the spins of the electrons passing through which may open the way for new spintronic compute March 5th, 2021

Govt.-Legislation/Regulation/Funding/Policy

A COSMIC approach to nanoscale science: Instrument at Berkeley Lab's Advanced Light Source achieves world-leading resolution of nanomaterials March 5th, 2021

Arrowhead Pharmaceuticals Files IND to Begin Phase 2b Study of ARO-APOC3 in Patients with Severe Hypertriglyceridemia March 2nd, 2021

Quantum quirk yields giant magnetic effect, where none should exist: Study opens window into the landscape of extreme topological matter March 1st, 2021

Bioinformatics tool accurately tracks synthetic: DNA Computer scientists show benefits of bioinformatics with PlasmidHawk February 26th, 2021

Possible Futures

Built to last: New copolymer binder to extend the life of lithium ion batteries: Scientists develop a novel binder material that protects the graphite anode of Li-ion batteries from degradation even after 1700 cycles March 5th, 2021

A COSMIC approach to nanoscale science: Instrument at Berkeley Lab's Advanced Light Source achieves world-leading resolution of nanomaterials March 5th, 2021

Light in concert with force reveals how materials become harder when illuminated: When indented by a probe in darkness, wafers of some semiconductors are putty-like. When illuminated by light whose wavelength matches the band gap, they become hard, as electrons and holes freed by March 5th, 2021

Taking 2D materials for a spin: Scientists at the University of Tsukuba and the Institute of High Pressure Physics fabricate a novel molybdenum disulfide transistor and create an image of the spins of the electrons passing through which may open the way for new spintronic compute March 5th, 2021

Chip Technology

Light in concert with force reveals how materials become harder when illuminated: When indented by a probe in darkness, wafers of some semiconductors are putty-like. When illuminated by light whose wavelength matches the band gap, they become hard, as electrons and holes freed by March 5th, 2021

CEA-Leti Announces 16 Papers to Be Presented At Photonics West 2021 and a Virtual Workshop on March 25 March 3rd, 2021

Quantum quirk yields giant magnetic effect, where none should exist: Study opens window into the landscape of extreme topological matter March 1st, 2021

Engineering the boundary between 2D and 3D materials: Cutting-edge microscope helps reveal ways to control the electronic properties of atomically thin materials February 26th, 2021

Optical computing/Photonic computing

New study investigates photonics for artificial intelligence and neuromorphic computing February 1st, 2021

Bringing Atoms to a Standstill: NIST Miniaturizes Laser Cooling January January 21st, 2021

USTC develops ultrahigh-performance plasmonic metal-oxide materials January 11th, 2021

Perfect transmission through barrier using sound: New study experimentally proved for the first time a century-old quantum theory that relativistic particles can pass through a barrier with 100% transmission December 29th, 2020

Discoveries

Built to last: New copolymer binder to extend the life of lithium ion batteries: Scientists develop a novel binder material that protects the graphite anode of Li-ion batteries from degradation even after 1700 cycles March 5th, 2021

A COSMIC approach to nanoscale science: Instrument at Berkeley Lab's Advanced Light Source achieves world-leading resolution of nanomaterials March 5th, 2021

Light in concert with force reveals how materials become harder when illuminated: When indented by a probe in darkness, wafers of some semiconductors are putty-like. When illuminated by light whose wavelength matches the band gap, they become hard, as electrons and holes freed by March 5th, 2021

Taking 2D materials for a spin: Scientists at the University of Tsukuba and the Institute of High Pressure Physics fabricate a novel molybdenum disulfide transistor and create an image of the spins of the electrons passing through which may open the way for new spintronic compute March 5th, 2021

Announcements

Built to last: New copolymer binder to extend the life of lithium ion batteries: Scientists develop a novel binder material that protects the graphite anode of Li-ion batteries from degradation even after 1700 cycles March 5th, 2021

A COSMIC approach to nanoscale science: Instrument at Berkeley Lab's Advanced Light Source achieves world-leading resolution of nanomaterials March 5th, 2021

Light in concert with force reveals how materials become harder when illuminated: When indented by a probe in darkness, wafers of some semiconductors are putty-like. When illuminated by light whose wavelength matches the band gap, they become hard, as electrons and holes freed by March 5th, 2021

Taking 2D materials for a spin: Scientists at the University of Tsukuba and the Institute of High Pressure Physics fabricate a novel molybdenum disulfide transistor and create an image of the spins of the electrons passing through which may open the way for new spintronic compute March 5th, 2021

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Built to last: New copolymer binder to extend the life of lithium ion batteries: Scientists develop a novel binder material that protects the graphite anode of Li-ion batteries from degradation even after 1700 cycles March 5th, 2021

A COSMIC approach to nanoscale science: Instrument at Berkeley Lab's Advanced Light Source achieves world-leading resolution of nanomaterials March 5th, 2021

Light in concert with force reveals how materials become harder when illuminated: When indented by a probe in darkness, wafers of some semiconductors are putty-like. When illuminated by light whose wavelength matches the band gap, they become hard, as electrons and holes freed by March 5th, 2021

Taking 2D materials for a spin: Scientists at the University of Tsukuba and the Institute of High Pressure Physics fabricate a novel molybdenum disulfide transistor and create an image of the spins of the electrons passing through which may open the way for new spintronic compute March 5th, 2021

Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records

Quantum quirk yields giant magnetic effect, where none should exist: Study opens window into the landscape of extreme topological matter March 1st, 2021

Bioinformatics tool accurately tracks synthetic: DNA Computer scientists show benefits of bioinformatics with PlasmidHawk February 26th, 2021

Researchers improve efficiency of next-generation solar cell material: Reducing internal losses could pave the way to low-cost perovskite-based photovoltaics that match silicon cells’ output February 26th, 2021

Pore-like proteins designed from scratch: By creating barrel-shaped proteins that embed into lipid membranes, biochemist have expanded the bioengineering toolkit February 19th, 2021

Photonics/Optics/Lasers

A COSMIC approach to nanoscale science: Instrument at Berkeley Lab's Advanced Light Source achieves world-leading resolution of nanomaterials March 5th, 2021

Light in concert with force reveals how materials become harder when illuminated: When indented by a probe in darkness, wafers of some semiconductors are putty-like. When illuminated by light whose wavelength matches the band gap, they become hard, as electrons and holes freed by March 5th, 2021

CEA-Leti Announces 16 Papers to Be Presented At Photonics West 2021 and a Virtual Workshop on March 25 March 3rd, 2021

From microsaws to nanodrills: laser pulses act as subtle machining tools: Industrial-grade materials processing on the sub-micron scale is enabled by spatially structured ultrashort laser pulses February 26th, 2021

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project