Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Rescue operations become faster thanks to graphene nanotubes

Abstract:
The lightest high-pressure cylinder in the world, developed with the help of graphene nanotubes, is not just yet another milestone for reinforced composites. The development will make rescue operations faster, helping to save precious time for firefighters and medical workers, and will reduce the energy and fuel consumption in transportation, meeting the targets of key regions to decrease the weight of CNG or hydrogen storage systems for the automotive industry.

Rescue operations become faster thanks to graphene nanotubes

Luxembourg | Posted on August 20th, 2020

Every second matters when your work is saving lives, and this is particularly true for firefighters who have to carry heavy equipment on their shoulders. Since advanced composite materials have become part of our everyday life, firefighters’ gear has got lighter, but it still weighs more than 27 kg on average. With the help of graphene nanotubes (also known as single wall carbon nanotubes), engineers at the innovative company Techplast that is based in Poland have found a way to further reduce this weight to make rescue workers’ activity more comfortable and faster by providing them with the lightest cylinders in the world.



“Graphene nanotubes introduced in composite reinforcement bring improvements in interlaminar shear strength (ILSS) leading to an increase in burst pressure level by up to 30%, according to the results of cylinder impact tests,” said Piotr Saferna, R&D leader of Techplast. “This incredible improvement in impact resistance has allowed us to reduce the weight of the cylinder while maintaining the mechanical properties, which results in the lightest 6.8 liter cylinder in the world for 300 bars of working pressure. The total mass of our SAFERnano cylinder, including all protective attachments and coatings, is less than 2.8 kg. This new generation of cylinders achieves a weight reduction of up to 75% compared with competing solutions, and of 15% compared with our previous generation of products.”



The R&D team at Techplast worked for three years to create the lightest cylinder in the world, which was achieved with the use of TUBALL graphene nanotubes, produced by Luxembourg-based OCSiAl. Today, this new generation of cylinders is already available on the global market, with recently completed TÜV certification confirming full compliance with international safety standards for storage of various gases, including air, oxygen, nitrogen and carbon dioxide.



In addition to the current applications in the fire rescue and emergency industry, this innovation has prospective uses in lightweight automotive onboard hydrogen storage that could boost the development of hydrogen fuel cell cars, which are considered to be one of the promising ways to reduce our carbon footprint. Lighter nanomodified cylinders with capacities up to 350 liters could be used as a new generation of pressure tanks for storing hydrogen to power vehicles, resulting in reduced fuel and energy consumption.

####

For more information, please click here

Contacts:
Anastasia Zirka
PR & Advertising Manager
+7 913 989 9239

Copyright © OCSiAl Group

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Intelligent optical chip to improve telecommunications: An INRS team uses autonomous learning approaches for optical waveform generators to boost optical signal processing functionalities for current and future telecom applications October 15th, 2021

Using quantum Parrondo’s random walks for encryption: Asst Prof Kang Hao Cheong and his research team from SUTD have set out to apply concepts from quantum Parrondo’s paradox in search of a working protocol for semiclassical encryption October 15th, 2021

Cellular environments shape molecular architecture: Researchers glean a more complete picture of a structure called the nuclear pore complex by studying it directly inside cells October 15th, 2021

How to program DNA robots to poke and prod cell membranes: A discovery of how to build little blocks out of DNA and get them to stick to lipids has implications for biosensing and mRNA vaccines October 15th, 2021

Graphene/ Graphite

Graphene nanotubes provide a shortcut to add conductivity to powder coatings October 1st, 2021

National 2D materials research center wins NSF funding: Boise State joins Penn State, Rice for Phase II expansion of ATOMIC center August 20th, 2021

National 2D materials research center wins NSF funding: Boise State joins Penn State, Rice for Phase II expansion of ATOMIC center August 20th, 2021

From anti-icing coatings to protection of containers with flammable liquids: heating films with graphene nanotubes enter the market August 20th, 2021

Possible Futures

Using quantum Parrondo’s random walks for encryption: Asst Prof Kang Hao Cheong and his research team from SUTD have set out to apply concepts from quantum Parrondo’s paradox in search of a working protocol for semiclassical encryption October 15th, 2021

Cellular environments shape molecular architecture: Researchers glean a more complete picture of a structure called the nuclear pore complex by studying it directly inside cells October 15th, 2021

How to program DNA robots to poke and prod cell membranes: A discovery of how to build little blocks out of DNA and get them to stick to lipids has implications for biosensing and mRNA vaccines October 15th, 2021

Molecular Sciences Software Institute receives $15 million grant from National Science Foundation October 15th, 2021

Nanotubes/Buckyballs/Fullerenes/Nanorods

Graphene nanotubes provide a shortcut to add conductivity to powder coatings October 1st, 2021

Scientists demonstrate pathway to forerunner of nanotubes that could lead to widespread industrial fabrication September 17th, 2021

From anti-icing coatings to protection of containers with flammable liquids: heating films with graphene nanotubes enter the market August 20th, 2021

Submerged sensors to control wearable electronics: Scientists in Korea make hand-drawn and flexible pressure sensors that can control a phone from underwater August 18th, 2021

Announcements

Using quantum Parrondo’s random walks for encryption: Asst Prof Kang Hao Cheong and his research team from SUTD have set out to apply concepts from quantum Parrondo’s paradox in search of a working protocol for semiclassical encryption October 15th, 2021

Cellular environments shape molecular architecture: Researchers glean a more complete picture of a structure called the nuclear pore complex by studying it directly inside cells October 15th, 2021

How to program DNA robots to poke and prod cell membranes: A discovery of how to build little blocks out of DNA and get them to stick to lipids has implications for biosensing and mRNA vaccines October 15th, 2021

Molecular Sciences Software Institute receives $15 million grant from National Science Foundation October 15th, 2021

Automotive/Transportation

Unprecedented view of a single catalyst nanoparticle at work: X-rays reveal compositional changes on active surface under reaction conditions October 1st, 2021

Silver nanoparticles boost performance of microbial fuel cells September 17th, 2021

Gamechanger for clean hydrogen production, Curtin research finds: Curtin University research has identified a new, cheaper and more efficient electrocatalyst to make green hydrogen from water that could one day open new avenues for large-scale clean energy production September 17th, 2021

HKUST scientists discover new mechanisms of activity improvement on bimetallic catalysts for hydrogen generation and fuel cells August 13th, 2021

Fuel Cells

Silver nanoparticles boost performance of microbial fuel cells September 17th, 2021

Gamechanger for clean hydrogen production, Curtin research finds: Curtin University research has identified a new, cheaper and more efficient electrocatalyst to make green hydrogen from water that could one day open new avenues for large-scale clean energy production September 17th, 2021

Cheaper hydrogen production: Efficient water and urea electrolysis with bimetallic yolk-shell nanoparticles September 10th, 2021

HKUST scientists discover new mechanisms of activity improvement on bimetallic catalysts for hydrogen generation and fuel cells August 13th, 2021

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project