Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > UCLA computer scientists set benchmarks to optimize quantum computer performance

Abstract:
Two UCLA computer scientists have shown that existing compilers, which tell quantum computers how to use their circuits to execute quantum programs, inhibit the computers' ability to achieve optimal performance. Specifically, their research has revealed that improving quantum compilation design could help achieve computation speeds up to 45 times faster than currently demonstrated.

UCLA computer scientists set benchmarks to optimize quantum computer performance

Los Angeles, CA | Posted on August 14th, 2020

The computer scientists created a family of benchmark quantum circuits with known optimal depths or sizes. In computer design, the smaller the circuit depth, the faster a computation can be completed. Smaller circuits also imply more computation can be packed into the existing quantum computer. Quantum computer designers could use these benchmarks to improve design tools that could then find the best circuit design.

"We believe in the 'measure, then improve' methodology," said lead researcher Jason Cong, a Distinguished Chancellor's Professor of Computer Science at UCLA Samueli School of Engineering. "Now that we have revealed the large optimality gap, we are on the way to develop better quantum compilation tools, and we hope the entire quantum research community will as well."

Cong and graduate student Daniel (Bochen) Tan tested their benchmarks in four of the most used quantum compilation tools. A study detailing their research was published in IEEE Transactions on Computers, a peer-reviewed journal.

Tan and Cong have made the benchmarks, named QUEKO, open source and available on the software repository GitHub.

Quantum computers utilize quantum mechanics to perform a great deal of computations simultaneously, which has the potential to make them exponentially faster and more powerful than today's best supercomputers. But many issues need to be addressed before these devices can move out of the research lab.

For example, due to the sensitive nature of how quantum circuits work, tiny environmental changes, such as small temperature fluctuations, can interfere with quantum computation. When that happens, the quantum circuits are called decoherent -- which is to say they have lost the information once encoded in them.

"If we can consistently halve the circuit depth by better layout synthesis, we effectively double the time it takes for a quantum device to become decoherent," Cong said.

"This compilation research could effectively extend that time, and it would be the equivalent to a huge advancement in experimental physics and electrical engineering," Cong added. "So we expect these benchmarks to motivate both academia and the industry to develop better layout synthesis tools, which in turn will help drive advances in quantum computing."

Cong and his colleagues led a similar effort in the early 2000s to optimize integrated circuit design in classical computers. That research effectively pushed two generations of advances in computer processing speeds, using only optimized layout design, which shortened the distance between the transistors that comprise the circuit. This cost-efficient improvement was achieved without any other major investments in technological advances, such as physically shrinking the circuits themselves.

"Quantum processors in existence today are extremely limited by environmental interference, which puts severe restrictions on the length of computations that can be performed," said Mark Gyure, executive director of the UCLA Center for Quantum Science and Engineering, who was not involved in this study. "That's why the recent research results from Professor Cong's group are so important because they have shown that most implementations of quantum circuits to date are likely extremely inefficient and more optimally compiled circuits could enable much longer algorithms to be executed. This could result in today's processors solving much more interesting problems than previously thought. That's an extremely important advance for the field and incredibly exciting."

###

The research was partially supported by NEC Corporation through an industrial partnership program at Center for Domain-Specific Computing at UCLA, which Cong directs.

Cong is also a member of the Center for Quantum Science and Engineering.

####

For more information, please click here

Contacts:
Christine Wei-li Lee

310-206-0540

@uclanewsroom

Copyright © University of California - Los Angeles

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Built to last: New copolymer binder to extend the life of lithium ion batteries: Scientists develop a novel binder material that protects the graphite anode of Li-ion batteries from degradation even after 1700 cycles March 5th, 2021

A COSMIC approach to nanoscale science: Instrument at Berkeley Lab's Advanced Light Source achieves world-leading resolution of nanomaterials March 5th, 2021

Light in concert with force reveals how materials become harder when illuminated: When indented by a probe in darkness, wafers of some semiconductors are putty-like. When illuminated by light whose wavelength matches the band gap, they become hard, as electrons and holes freed by March 5th, 2021

Taking 2D materials for a spin: Scientists at the University of Tsukuba and the Institute of High Pressure Physics fabricate a novel molybdenum disulfide transistor and create an image of the spins of the electrons passing through which may open the way for new spintronic compute March 5th, 2021

Possible Futures

Built to last: New copolymer binder to extend the life of lithium ion batteries: Scientists develop a novel binder material that protects the graphite anode of Li-ion batteries from degradation even after 1700 cycles March 5th, 2021

A COSMIC approach to nanoscale science: Instrument at Berkeley Lab's Advanced Light Source achieves world-leading resolution of nanomaterials March 5th, 2021

Light in concert with force reveals how materials become harder when illuminated: When indented by a probe in darkness, wafers of some semiconductors are putty-like. When illuminated by light whose wavelength matches the band gap, they become hard, as electrons and holes freed by March 5th, 2021

Taking 2D materials for a spin: Scientists at the University of Tsukuba and the Institute of High Pressure Physics fabricate a novel molybdenum disulfide transistor and create an image of the spins of the electrons passing through which may open the way for new spintronic compute March 5th, 2021

Quantum Computing

CEA-Leti Announces 16 Papers to Be Presented At Photonics West 2021 and a Virtual Workshop on March 25 March 3rd, 2021

Quantum quirk yields giant magnetic effect, where none should exist: Study opens window into the landscape of extreme topological matter March 1st, 2021

Quantum computing: when ignorance is wanted February 19th, 2021

Blueprint for fault-tolerant qubits: Scientists at Forschungszentrum Jülich and RWTH Aachen University have designed a circuit for quantum computers which is naturally protected against common errors February 19th, 2021

Discoveries

Built to last: New copolymer binder to extend the life of lithium ion batteries: Scientists develop a novel binder material that protects the graphite anode of Li-ion batteries from degradation even after 1700 cycles March 5th, 2021

A COSMIC approach to nanoscale science: Instrument at Berkeley Lab's Advanced Light Source achieves world-leading resolution of nanomaterials March 5th, 2021

Light in concert with force reveals how materials become harder when illuminated: When indented by a probe in darkness, wafers of some semiconductors are putty-like. When illuminated by light whose wavelength matches the band gap, they become hard, as electrons and holes freed by March 5th, 2021

Taking 2D materials for a spin: Scientists at the University of Tsukuba and the Institute of High Pressure Physics fabricate a novel molybdenum disulfide transistor and create an image of the spins of the electrons passing through which may open the way for new spintronic compute March 5th, 2021

Announcements

Built to last: New copolymer binder to extend the life of lithium ion batteries: Scientists develop a novel binder material that protects the graphite anode of Li-ion batteries from degradation even after 1700 cycles March 5th, 2021

A COSMIC approach to nanoscale science: Instrument at Berkeley Lab's Advanced Light Source achieves world-leading resolution of nanomaterials March 5th, 2021

Light in concert with force reveals how materials become harder when illuminated: When indented by a probe in darkness, wafers of some semiconductors are putty-like. When illuminated by light whose wavelength matches the band gap, they become hard, as electrons and holes freed by March 5th, 2021

Taking 2D materials for a spin: Scientists at the University of Tsukuba and the Institute of High Pressure Physics fabricate a novel molybdenum disulfide transistor and create an image of the spins of the electrons passing through which may open the way for new spintronic compute March 5th, 2021

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Built to last: New copolymer binder to extend the life of lithium ion batteries: Scientists develop a novel binder material that protects the graphite anode of Li-ion batteries from degradation even after 1700 cycles March 5th, 2021

A COSMIC approach to nanoscale science: Instrument at Berkeley Lab's Advanced Light Source achieves world-leading resolution of nanomaterials March 5th, 2021

Light in concert with force reveals how materials become harder when illuminated: When indented by a probe in darkness, wafers of some semiconductors are putty-like. When illuminated by light whose wavelength matches the band gap, they become hard, as electrons and holes freed by March 5th, 2021

Taking 2D materials for a spin: Scientists at the University of Tsukuba and the Institute of High Pressure Physics fabricate a novel molybdenum disulfide transistor and create an image of the spins of the electrons passing through which may open the way for new spintronic compute March 5th, 2021

Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records

Quantum quirk yields giant magnetic effect, where none should exist: Study opens window into the landscape of extreme topological matter March 1st, 2021

Bioinformatics tool accurately tracks synthetic: DNA Computer scientists show benefits of bioinformatics with PlasmidHawk February 26th, 2021

Researchers improve efficiency of next-generation solar cell material: Reducing internal losses could pave the way to low-cost perovskite-based photovoltaics that match silicon cells’ output February 26th, 2021

Pore-like proteins designed from scratch: By creating barrel-shaped proteins that embed into lipid membranes, biochemist have expanded the bioengineering toolkit February 19th, 2021

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project