Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > May the force be with you: Detecting ultrafast light by its force: From cell phones to solar cells - research has implications for improvements in a wide range of technologies

Abstract:
A McGill research team has developed a new technique to detect nano-sized imperfections in materials. They believe this discovery will lead to improvements in the optical detectors used in a wide range of technologies, from cell phones to cameras and fiber optics, as well as in solar cells.

May the force be with you: Detecting ultrafast light by its force: From cell phones to solar cells - research has implications for improvements in a wide range of technologies

Montreal, Canada | Posted on August 7th, 2020

The researchers, led by Professor Peter Grutter from McGill's Physics Department, used atomic force microscopy to detect the ultrafast forces that arise when light interacts with matter. In their paper, published this week in PNAS, they demonstrate that forces arising from two, time-delayed light pulses can be detected with sub-femtosecond precision (these are millionths of a billionth of a second) and nanometer spatial resolution in a wide range of materials.

Improved technique for using light to detect imperfections in materials

"To understand and improve materials, scientists typically use light pulses faster than 100 femtoseconds to explore how quickly reactions occur and determine the slowest steps in the process," explains Zeno Schumacher, the paper's first author who was a post-doctoral fellow in Grutter's lab when the research was done and is now based at ETH Zurich. "The electric field of a light pulse oscillates every few femtoseconds and will push and pull on the atomic-sized charges and ions that comprise matter. These charged bodies then move, or polarize, under these forces and it is this motion that determines a material's optical properties."

Real materials used in solar cells (also known as photovoltaics) and in the optical detectors used in equipment like cell phones and cameras have many imperfections and defects of different types that are very difficult to characterize, as they are typically only a nanometer in size. Moreover, it has been very challenging to identify and study the 'hot spots' and 'weak links' in the materials that can slow down or hinder light induced processes because traditional techniques for detecting imperfections average over differences in properties at a larger area.

Seeing nanoscale imperfections in a range of materials

The new technique developed by the McGill team combines ultrafast nonlinear optical methods with the high spatial resolution of atomic force microscopy. They have demonstrated that their technique works on an insulating non-linear optical material (LiNbO3) as well as a nanometer thin, two-dimensional semiconducting flake of molybdenum diselenide (MoSe2), an inorganic compound used in optical and scanning-probe microscopy.

"Our new technique is applicable to any material, such as metals, semiconductors and insulators," says Peter Grutter, the senior author on the paper. "It will enable use high spatial and temporal resolution to study, understand and ultimately control for imperfections in photovoltaic materials. Ultimately, it should help us improve solar cells and the optical detectors used in a wide range of technologies."

###


The research was supported by Natural Sciences and Engineering Research Council of Canada (NSERC, les Fonds de recherche du Québec - Nature et technologies (FRQNT), and the Canada Foundation for Innovation (CFI).

####

About McGill University
Founded in Montreal, Quebec, in 1821, McGill University is Canada's top ranked medical doctoral university. McGill is consistently ranked as one of the top universities, both nationally and internationally. It is a world-renowned institution of higher learning with research activities spanning two campuses, 11 faculties, 13 professional schools, 300 programs of study and over 40,000 students, including more than 10,200 graduate students. McGill attracts students from over 150 countries around the world, its 12,800 international students making up 31% of the student body. Over half of McGill students claim a first language other than English, including approximately 19% of our students who say French is their mother tongue.

For more information, please click here

Contacts:
Katherine Gombay

514-717-2289

@McGillU

Copyright © McGill University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

To read "Nanoscale force sensing of an ultrafast nonlinear optical response" by Zeno Schumacher et al in PNAS doi:10.1073/pnas.2003945117

Related News Press

News and information

Built to last: New copolymer binder to extend the life of lithium ion batteries: Scientists develop a novel binder material that protects the graphite anode of Li-ion batteries from degradation even after 1700 cycles March 5th, 2021

A COSMIC approach to nanoscale science: Instrument at Berkeley Lab's Advanced Light Source achieves world-leading resolution of nanomaterials March 5th, 2021

Light in concert with force reveals how materials become harder when illuminated: When indented by a probe in darkness, wafers of some semiconductors are putty-like. When illuminated by light whose wavelength matches the band gap, they become hard, as electrons and holes freed by March 5th, 2021

Taking 2D materials for a spin: Scientists at the University of Tsukuba and the Institute of High Pressure Physics fabricate a novel molybdenum disulfide transistor and create an image of the spins of the electrons passing through which may open the way for new spintronic compute March 5th, 2021

Possible Futures

Built to last: New copolymer binder to extend the life of lithium ion batteries: Scientists develop a novel binder material that protects the graphite anode of Li-ion batteries from degradation even after 1700 cycles March 5th, 2021

A COSMIC approach to nanoscale science: Instrument at Berkeley Lab's Advanced Light Source achieves world-leading resolution of nanomaterials March 5th, 2021

Light in concert with force reveals how materials become harder when illuminated: When indented by a probe in darkness, wafers of some semiconductors are putty-like. When illuminated by light whose wavelength matches the band gap, they become hard, as electrons and holes freed by March 5th, 2021

Taking 2D materials for a spin: Scientists at the University of Tsukuba and the Institute of High Pressure Physics fabricate a novel molybdenum disulfide transistor and create an image of the spins of the electrons passing through which may open the way for new spintronic compute March 5th, 2021

Optical computing/Photonic computing

New study investigates photonics for artificial intelligence and neuromorphic computing February 1st, 2021

Bringing Atoms to a Standstill: NIST Miniaturizes Laser Cooling January January 21st, 2021

USTC develops ultrahigh-performance plasmonic metal-oxide materials January 11th, 2021

Perfect transmission through barrier using sound: New study experimentally proved for the first time a century-old quantum theory that relativistic particles can pass through a barrier with 100% transmission December 29th, 2020

Discoveries

Built to last: New copolymer binder to extend the life of lithium ion batteries: Scientists develop a novel binder material that protects the graphite anode of Li-ion batteries from degradation even after 1700 cycles March 5th, 2021

A COSMIC approach to nanoscale science: Instrument at Berkeley Lab's Advanced Light Source achieves world-leading resolution of nanomaterials March 5th, 2021

Light in concert with force reveals how materials become harder when illuminated: When indented by a probe in darkness, wafers of some semiconductors are putty-like. When illuminated by light whose wavelength matches the band gap, they become hard, as electrons and holes freed by March 5th, 2021

Taking 2D materials for a spin: Scientists at the University of Tsukuba and the Institute of High Pressure Physics fabricate a novel molybdenum disulfide transistor and create an image of the spins of the electrons passing through which may open the way for new spintronic compute March 5th, 2021

Announcements

Built to last: New copolymer binder to extend the life of lithium ion batteries: Scientists develop a novel binder material that protects the graphite anode of Li-ion batteries from degradation even after 1700 cycles March 5th, 2021

A COSMIC approach to nanoscale science: Instrument at Berkeley Lab's Advanced Light Source achieves world-leading resolution of nanomaterials March 5th, 2021

Light in concert with force reveals how materials become harder when illuminated: When indented by a probe in darkness, wafers of some semiconductors are putty-like. When illuminated by light whose wavelength matches the band gap, they become hard, as electrons and holes freed by March 5th, 2021

Taking 2D materials for a spin: Scientists at the University of Tsukuba and the Institute of High Pressure Physics fabricate a novel molybdenum disulfide transistor and create an image of the spins of the electrons passing through which may open the way for new spintronic compute March 5th, 2021

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Built to last: New copolymer binder to extend the life of lithium ion batteries: Scientists develop a novel binder material that protects the graphite anode of Li-ion batteries from degradation even after 1700 cycles March 5th, 2021

A COSMIC approach to nanoscale science: Instrument at Berkeley Lab's Advanced Light Source achieves world-leading resolution of nanomaterials March 5th, 2021

Light in concert with force reveals how materials become harder when illuminated: When indented by a probe in darkness, wafers of some semiconductors are putty-like. When illuminated by light whose wavelength matches the band gap, they become hard, as electrons and holes freed by March 5th, 2021

Taking 2D materials for a spin: Scientists at the University of Tsukuba and the Institute of High Pressure Physics fabricate a novel molybdenum disulfide transistor and create an image of the spins of the electrons passing through which may open the way for new spintronic compute March 5th, 2021

Photonics/Optics/Lasers

A COSMIC approach to nanoscale science: Instrument at Berkeley Lab's Advanced Light Source achieves world-leading resolution of nanomaterials March 5th, 2021

Light in concert with force reveals how materials become harder when illuminated: When indented by a probe in darkness, wafers of some semiconductors are putty-like. When illuminated by light whose wavelength matches the band gap, they become hard, as electrons and holes freed by March 5th, 2021

CEA-Leti Announces 16 Papers to Be Presented At Photonics West 2021 and a Virtual Workshop on March 25 March 3rd, 2021

From microsaws to nanodrills: laser pulses act as subtle machining tools: Industrial-grade materials processing on the sub-micron scale is enabled by spatially structured ultrashort laser pulses February 26th, 2021

Solar/Photovoltaic

Researchers improve efficiency of next-generation solar cell material: Reducing internal losses could pave the way to low-cost perovskite-based photovoltaics that match silicon cells’ output February 26th, 2021

Squeezing a rock-star material could make it stable enough for solar cells: A promising lead halide perovskite is great at converting sunlight to electricity, but it breaks down at room temperature; now scientists have discovered how to stabilize it with pressure from a diamond a January 22nd, 2021

USTC develops ultrahigh-performance plasmonic metal-oxide materials January 11th, 2021

Engineers find antioxidants improve nanoscale visualization of polymers January 8th, 2021

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project