Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International

Wikipedia Affiliate Button

Home > Press > May the force be with you: Detecting ultrafast light by its force: From cell phones to solar cells - research has implications for improvements in a wide range of technologies

Abstract:
A McGill research team has developed a new technique to detect nano-sized imperfections in materials. They believe this discovery will lead to improvements in the optical detectors used in a wide range of technologies, from cell phones to cameras and fiber optics, as well as in solar cells.

May the force be with you: Detecting ultrafast light by its force: From cell phones to solar cells - research has implications for improvements in a wide range of technologies

Montreal, Canada | Posted on August 7th, 2020

The researchers, led by Professor Peter Grutter from McGill's Physics Department, used atomic force microscopy to detect the ultrafast forces that arise when light interacts with matter. In their paper, published this week in PNAS, they demonstrate that forces arising from two, time-delayed light pulses can be detected with sub-femtosecond precision (these are millionths of a billionth of a second) and nanometer spatial resolution in a wide range of materials.

Improved technique for using light to detect imperfections in materials

"To understand and improve materials, scientists typically use light pulses faster than 100 femtoseconds to explore how quickly reactions occur and determine the slowest steps in the process," explains Zeno Schumacher, the paper's first author who was a post-doctoral fellow in Grutter's lab when the research was done and is now based at ETH Zurich. "The electric field of a light pulse oscillates every few femtoseconds and will push and pull on the atomic-sized charges and ions that comprise matter. These charged bodies then move, or polarize, under these forces and it is this motion that determines a material's optical properties."

Real materials used in solar cells (also known as photovoltaics) and in the optical detectors used in equipment like cell phones and cameras have many imperfections and defects of different types that are very difficult to characterize, as they are typically only a nanometer in size. Moreover, it has been very challenging to identify and study the 'hot spots' and 'weak links' in the materials that can slow down or hinder light induced processes because traditional techniques for detecting imperfections average over differences in properties at a larger area.

Seeing nanoscale imperfections in a range of materials

The new technique developed by the McGill team combines ultrafast nonlinear optical methods with the high spatial resolution of atomic force microscopy. They have demonstrated that their technique works on an insulating non-linear optical material (LiNbO3) as well as a nanometer thin, two-dimensional semiconducting flake of molybdenum diselenide (MoSe2), an inorganic compound used in optical and scanning-probe microscopy.

"Our new technique is applicable to any material, such as metals, semiconductors and insulators," says Peter Grutter, the senior author on the paper. "It will enable use high spatial and temporal resolution to study, understand and ultimately control for imperfections in photovoltaic materials. Ultimately, it should help us improve solar cells and the optical detectors used in a wide range of technologies."

###


The research was supported by Natural Sciences and Engineering Research Council of Canada (NSERC, les Fonds de recherche du Québec - Nature et technologies (FRQNT), and the Canada Foundation for Innovation (CFI).

####

About McGill University
Founded in Montreal, Quebec, in 1821, McGill University is Canada's top ranked medical doctoral university. McGill is consistently ranked as one of the top universities, both nationally and internationally. It is a world-renowned institution of higher learning with research activities spanning two campuses, 11 faculties, 13 professional schools, 300 programs of study and over 40,000 students, including more than 10,200 graduate students. McGill attracts students from over 150 countries around the world, its 12,800 international students making up 31% of the student body. Over half of McGill students claim a first language other than English, including approximately 19% of our students who say French is their mother tongue.

For more information, please click here

Contacts:
Katherine Gombay

514-717-2289

@McGillU

Copyright © McGill University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

To read "Nanoscale force sensing of an ultrafast nonlinear optical response" by Zeno Schumacher et al in PNAS doi:10.1073/pnas.2003945117

Related News Press

News and information

Nano-microscope gives first direct observation of the magnetic properties of 2D materials: Discovery means new class of materials and technologies September 18th, 2020

Physicists make electrical nanolasers even smaller September 18th, 2020

Shape matters for light-activated nanocatalysts - Study: Pointed tips on aluminum 'octopods' increase catalytic reactivity September 18th, 2020

Aberrant electronic and structural alterations in pressure tuned perovskite NaOsO3 September 18th, 2020

Possible Futures

Nano-microscope gives first direct observation of the magnetic properties of 2D materials: Discovery means new class of materials and technologies September 18th, 2020

Physicists make electrical nanolasers even smaller September 18th, 2020

Shape matters for light-activated nanocatalysts - Study: Pointed tips on aluminum 'octopods' increase catalytic reactivity September 18th, 2020

Aberrant electronic and structural alterations in pressure tuned perovskite NaOsO3 September 18th, 2020

Optical computing/Photonic computing

Physicists make electrical nanolasers even smaller September 18th, 2020

A phonon laser - coherent vibrations from a self-breathing resonator September 11th, 2020

Painting With Light: Novel Nanopillars Precisely Control the Color and Intensity of Transmitted Light September 4th, 2020

Ambient light alters refraction in 2D material: Rice researchers find effect that could aid 3D displays, virtual reality, self-driving vehicles September 2nd, 2020

Discoveries

Nano-microscope gives first direct observation of the magnetic properties of 2D materials: Discovery means new class of materials and technologies September 18th, 2020

Physicists make electrical nanolasers even smaller September 18th, 2020

Shape matters for light-activated nanocatalysts - Study: Pointed tips on aluminum 'octopods' increase catalytic reactivity September 18th, 2020

Aberrant electronic and structural alterations in pressure tuned perovskite NaOsO3 September 18th, 2020

Announcements

Nano-microscope gives first direct observation of the magnetic properties of 2D materials: Discovery means new class of materials and technologies September 18th, 2020

Physicists make electrical nanolasers even smaller September 18th, 2020

Shape matters for light-activated nanocatalysts - Study: Pointed tips on aluminum 'octopods' increase catalytic reactivity September 18th, 2020

Aberrant electronic and structural alterations in pressure tuned perovskite NaOsO3 September 18th, 2020

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Who stole the light? Self-induced ultrafast demagnetization limits the amount of light diffracted from magnetic samples at soft x-ray energies September 18th, 2020

Nano-microscope gives first direct observation of the magnetic properties of 2D materials: Discovery means new class of materials and technologies September 18th, 2020

Physicists make electrical nanolasers even smaller September 18th, 2020

Shape matters for light-activated nanocatalysts - Study: Pointed tips on aluminum 'octopods' increase catalytic reactivity September 18th, 2020

Photonics/Optics/Lasers

Who stole the light? Self-induced ultrafast demagnetization limits the amount of light diffracted from magnetic samples at soft x-ray energies September 18th, 2020

Physicists make electrical nanolasers even smaller September 18th, 2020

A phonon laser - coherent vibrations from a self-breathing resonator September 11th, 2020

Quantitatively understanding of angle-resolved polarized Raman scattering from black phosphorus September 11th, 2020

Solar/Photovoltaic

Layer of nanoparticles could improve LED performance and lifetime August 7th, 2020

Crystal structure discovered almost 200 years ago could hold key to solar cell revolution July 3rd, 2020

Printed perovskite LEDs: An innovative technique towards a new standard process of electronics manufacturing June 12th, 2020

Transparent graphene electrodes might lead to new generation of solar cells: New roll-to-roll production method could enable lightweight, flexible solar devices and a new generation of display screens June 8th, 2020

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project