Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Sustainable chemistry at the quantum level: University of Pittsburgh's John Keith explores the sustainable potential of computational quantum chemistry

The image represents atomic scale structures of different materials (carbides, nitrides, and oxides) coming out of a screen of a computer in a scientific laboratory. The computational alchemy procedure reported in article number 1800142 by Charles D. Griego, Karthikeyan Saravanan, and John A. Keith leverages a few Kohn‐Sham density functional theory calculations for high‐throughput screening of novel material catalysts with minimal computational effort. ((High Throughput Screening: Benchmarking Computational Alchemy for Carbide, Nitride, and Oxide Catalysts (Adv. Theory Simul. 4/2019) doi:10.1002/adts.201970010)
The image represents atomic scale structures of different materials (carbides, nitrides, and oxides) coming out of a screen of a computer in a scientific laboratory. The computational alchemy procedure reported in article number 1800142 by Charles D. Griego, Karthikeyan Saravanan, and John A. Keith leverages a few Kohn‐Sham density functional theory calculations for high‐throughput screening of novel material catalysts with minimal computational effort. ((High Throughput Screening: Benchmarking Computational Alchemy for Carbide, Nitride, and Oxide Catalysts (Adv. Theory Simul. 4/2019) doi:10.1002/adts.201970010)

Abstract:
Developing catalysts for sustainable fuel and chemical production requires a kind of Goldilocks Effect - some catalysts are too ineffective while others are too uneconomical. Catalyst testing also takes a lot of time and resources. New breakthroughs in computational quantum chemistry, however, hold promise for discovering catalysts that are "just right" and thousands of times faster than standard approaches.

Sustainable chemistry at the quantum level: University of Pittsburgh's John Keith explores the sustainable potential of computational quantum chemistry

Pittsburgh, PA | Posted on August 6th, 2020

University of Pittsburgh Associate Professor John A. Keith and his lab group at the Swanson School of Engineering are using new quantum chemistry computing procedures to categorize hypothetical electrocatalysts that are "too slow" or "too expensive", far more thoroughly and quickly than was considered possible a few years ago. Keith is also the Richard King Mellon Faculty Fellow in Energy in the Swanson School's Department of Chemical and Petroleum Engineering.

The Keith Group's research compilation, "Computational Quantum Chemical Explorations of Chemical/Material Space for Efficient Electrocatalysts (DOI: 10.1149.2/2.F09202IF)," was featured this month in Interface, a quarterly magazine of The Electrochemical Society.

"For decades, catalyst development was the result of trial and error - years-long development and testing in the lab, giving us a basic understanding of how catalytic processes work. Today, computational modeling provides us with new insight into these reactions at the molecular level," Keith explained. "Most exciting however is computational quantum chemistry, which can simulate the structures and dynamics of many atoms at a time. Coupled with the growing field of machine learning, we can more quickly and precisely predict and simulate catalytic models."

In the article, Keith explained a three-pronged approach for predicting novel electrocatalysts: 1) analyzing hypothetical reaction paths; 2) predicting ideal electrochemical environments; and 3) high-throughput screening powered by alchemical perturbation density functional theory and machine learning. The article explains how these approaches can transform how engineers and scientists develop electrocatalysts needed for society.

"These emerging computational methods can allow researchers to be more than a thousand times as effective at discovering new systems compared to standard protocols," Keith said. "For centuries chemistry and materials science relied on traditional Edisonian models of laboratory exploration, which bring far more failures than successes and thus a lot of wasted time and resources. Traditional computational quantum chemistry has accelerated these efforts, but the newest methods supercharge them. This helps researchers better pinpoint the undiscovered catalysts society desperately needs for a sustainable future."

###

About John Keith

Dr. Keith is an associate professor and R. K. Mellon Faculty Fellow in Energy in the Department of Chemical and Petroleum Engineering at the University of Pittsburgh. He obtained a BA degree from Wesleyan University (2001) and a PhD from Caltech (2007). He was an Alexander von Humboldt postdoctoral fellow at the University of Ulm (2007-2010) and later an associate research scholar at Princeton University (2010-2013). Keith is an expert in applying a wide range of computational quantum chemistry methods to understand molecular scale phenomena across broad areas of science and engineering. He has more than 65 research publications and was the recipient of a U.S. National Science Foundation CAREER award. From 2019-2020, he was funded by the U.S. and Luxembourg science foundations as a visiting researcher at the University of Luxembourg, where he studied state of the art chemical physics and atomistic machine learning methods.

####

For more information, please click here

Contacts:
Paul Kovach

412-624-0265

Copyright © University of Pittsburgh

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

HKUST researchers develop a novel integration scheme for efficient coupling between III-V and silicon November 18th, 2022

Researchers at Purdue unlock light-matter interactions on sub-nanometer scales, leading to ‘picophotonics’ November 18th, 2022

Rice turns asphaltene into graphene for composites: ‘Flashed’ byproduct of crude oil could bolster materials, polymer inks November 18th, 2022

How “2D” materials expand: New technique that accurately measures how atom-thin materials expand when heated could help engineers develop faster, more powerful electronic devices November 18th, 2022

Chemistry

New $1.25 million research project will map materials at the nanoscale: The work can lead to new catalysts and other compounds that could be applicable in a range of areas including quantum science, renewable energy, life sciences and sustainability October 28th, 2022

Liquid crystal templated chiral nanomaterials October 14th, 2022

Scientists count electric charges in a single catalyst nanoparticle down to the electron: Tenfold improvement in the sensitivity of electron holography reveals the net charge in a single platinum nanoparticle with a precision of just one electron, providing fundamental informatio October 14th, 2022

Wrapping of nanosize copper cubes can help convert carbon dioxide into other chemicals September 23rd, 2022

Quantum chemistry

Scientists capture a ‘quantum tug’ between neighboring water molecules: Ultrafast electrons shed light on the web of hydrogen bonds that gives water its strange properties, vital for many chemical and biological processes July 8th, 2022

University of Oklahoma scientist’s quantum technology work garners international attention February 11th, 2022

Examining recent developments in quantum chromodynamics: A new collection looks at recent development in the field of quantum chromodynamics from a range of perspectives December 24th, 2021

Putting a new theory of many-particle quantum systems to the test: Experiments show that generalized hydrodynamics accurately simulates an out-of-equilibrium quantum system September 3rd, 2021

Possible Futures

HKUST researchers develop a novel integration scheme for efficient coupling between III-V and silicon November 18th, 2022

NIST’s grid of quantum islands could reveal secrets for powerful technologies November 18th, 2022

A new experiment pushes the boundaries of our understanding of topological quantum matter: The behavior of bosonic particles observed in a magnetic insulator fabricated from ruthenium chloride can be explained by a relatively new and little-studied physics phenomenon called the B November 18th, 2022

Trial by wind: Testing the heat resistance of carbon fiber-reinforced ultra-high-temperature ceramic matrix composites: Researchers use an arc-wind tunnel to test the heat resistance of carbon fiber reinforced ultra-high-temperature ceramic matrix composites November 18th, 2022

Discoveries

An on-chip time-lens generates ultrafast pulses: New device opens the doors to applications in communication, quantum computing, astronomy November 18th, 2022

Researchers at Purdue unlock light-matter interactions on sub-nanometer scales, leading to ‘picophotonics’ November 18th, 2022

Rice turns asphaltene into graphene for composites: ‘Flashed’ byproduct of crude oil could bolster materials, polymer inks November 18th, 2022

How “2D” materials expand: New technique that accurately measures how atom-thin materials expand when heated could help engineers develop faster, more powerful electronic devices November 18th, 2022

Announcements

HKUST researchers develop a novel integration scheme for efficient coupling between III-V and silicon November 18th, 2022

NIST’s grid of quantum islands could reveal secrets for powerful technologies November 18th, 2022

A new experiment pushes the boundaries of our understanding of topological quantum matter: The behavior of bosonic particles observed in a magnetic insulator fabricated from ruthenium chloride can be explained by a relatively new and little-studied physics phenomenon called the B November 18th, 2022

How “2D” materials expand: New technique that accurately measures how atom-thin materials expand when heated could help engineers develop faster, more powerful electronic devices November 18th, 2022

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

An on-chip time-lens generates ultrafast pulses: New device opens the doors to applications in communication, quantum computing, astronomy November 18th, 2022

Researchers at Purdue unlock light-matter interactions on sub-nanometer scales, leading to ‘picophotonics’ November 18th, 2022

Rice turns asphaltene into graphene for composites: ‘Flashed’ byproduct of crude oil could bolster materials, polymer inks November 18th, 2022

How “2D” materials expand: New technique that accurately measures how atom-thin materials expand when heated could help engineers develop faster, more powerful electronic devices November 18th, 2022

Quantum nanoscience

Upgrading your computer to quantum September 23rd, 2022

Key element for a scalable quantum computer: Physicists from Forschungszentrum Jülich and RWTH Aachen University demonstrate electron transport on a quantum chip September 23rd, 2022

Lattice distortion of perovskite quantum dots induces coherent quantum beating September 9th, 2022

Master equation to boost quantum technologies: FQXi-funded analysis will help physicists exert exquisitely precise real-time feedback control over quantum systems August 26th, 2022

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project