Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International

Wikipedia Affiliate Button

Home > Press > Physicists find misaligned carbon sheets yield unparalleled properties

Graphene is a single layer of carbon atoms arranged in a flat honeycomb pattern, where each hexagon is formed by six carbon atoms at its vertices. University of Texas at Dallas physicists are studying the electrical properties that emerge when two layers of graphene are stacked.

CREDIT
University of Texas at Dallas
Graphene is a single layer of carbon atoms arranged in a flat honeycomb pattern, where each hexagon is formed by six carbon atoms at its vertices. University of Texas at Dallas physicists are studying the electrical properties that emerge when two layers of graphene are stacked. CREDIT University of Texas at Dallas

Abstract:
A material composed of two one-atom-thick layers of carbon has grabbed the attention of physicists worldwide for its intriguing -- and potentially exploitable -- conductive properties.



This animation shows what happens when two stacked graphene layers are misaligned by a small amount called a twist angle. A new periodic design in the mesh emerges, called a moiré pattern. UT Dallas physicists are investigating how the twist angle affects the electronic properties of such twisted bilayer graphene.

Physicists find misaligned carbon sheets yield unparalleled properties

Austin, TX | Posted on July 31st, 2020

Dr. Fan Zhang, assistant professor of physics in the School of Natural Sciences and Mathematics at The University of Texas at Dallas, and physics doctoral student Qiyue Wang published an article in June with Dr. Fengnian Xia's group at Yale University in Nature Photonics that describes how the ability of twisted bilayer graphene to conduct electrical current changes in response to mid-infrared light.

From One to Two Layers

Graphene is a single layer of carbon atoms arranged in a flat honeycomb pattern, where each hexagon is formed by six carbon atoms at its vertices. Since graphene's first isolation in 2004, its unique properties have been intensely studied by scientists for potential use in advanced computers, materials and devices.

If two sheets of graphene are stacked on top of one another, and one layer is rotated so that the layers are slightly out of alignment, the resulting physical configuration, called twisted bilayer graphene, yields electronic properties that differ significantly from those exhibited by a single layer alone or by two aligned layers.

"Graphene has been of interest for about 15 years," Zhang said. "A single layer is interesting to study, but if we have two layers, their interaction should render much richer and more interesting physics. This is why we want to study bilayer graphene systems."

A New Field Emerges

When the graphene layers are misaligned, a new periodic design in the mesh emerges, called a moiré pattern. The moiré pattern is also a hexagon, but it can be made up of more than 10,000 carbon atoms.

"The angle at which the two layers of graphene are misaligned -- the twist angle -- is critically important to the material's electronic properties," Wang said. "The smaller the twist angle, the larger the moiré periodicity."

The unusual effects of specific twist angles on electron behavior were first proposed in a 2011 article by Dr. Allan MacDonald, professor of physics at UT Austin, and Dr. Rafi Bistritzer. Zhang witnessed the birth of this field as a doctoral student in MacDonald's group.

"At that time, others really paid no attention to the theory, but now it has become arguably the hottest topic in physics," Zhang said.

In that 2011 research MacDonald and Bistritzer predicted that electrons' kinetic energy can vanish in a graphene bilayer misaligned by the so-called "magic angle" of 1.1 degrees. In 2018, researchers at the Massachusetts Institute of Technology proved this theory, finding that offsetting two graphene layers by 1.1 degrees produced a two-dimensional superconductor, a material that conducts electrical current with no resistance and no energy loss.

In a 2019 article in Science Advances, Zhang and Wang, together with Dr. Jeanie Lau's group at The Ohio State University, showed that when offset by 0.93 degrees, twisted bilayer graphene exhibits both superconducting and insulating states, thereby widening the magic angle significantly.

"In our previous work, we saw superconductivity as well as insulation. That's what's making the study of twisted bilayer graphene such a hot field -- superconductivity. The fact that you can manipulate pure carbon to superconduct is amazing and unprecedented," Wang said.

New UT Dallas Findings

In his most recent research in Nature Photonics, Zhang and his collaborators at Yale investigated whether and how twisted bilayer graphene interacts with mid-infrared light, which humans can't see but can detect as heat. "Interactions between light and matter are useful in many devices -- for example, converting sunlight into electrical power," Wang said. "Almost every object emits infrared light, including people, and this light can be detected with devices."

Zhang is a theoretical physicist, so he and Wang set out to determine how mid-infrared light might affect the conductance of electrons in twisted bilayer graphene. Their work involved calculating the light absorption based on the moiré pattern's band structure, a concept that determines how electrons move in a material quantum mechanically.

"There are standard ways to calculate the band structure and light absorption in a regular crystal, but this is an artificial crystal, so we had to come up with a new method," Wang said. Using resources of the Texas Advanced Computing Center, a supercomputer facility on the UT Austin campus, Wang calculated the band structure and showed how the material absorbs light.

The Yale group fabricated devices and ran experiments showing that the mid-infrared photoresponse -- the increase in conductance due to the light shining -- was unusually strong and largest at the twist angle of 1.8 degrees. The strong photoresponse vanished for a twist angle less than 0.5 degrees.

"Our theoretical results not only matched well with the experimental findings, but also pointed to a mechanism that is fundamentally connected to the period of moiré pattern, which itself is connected to the twist angle between the two graphene layers," Zhang said.

Next Step

"The twist angle is clearly very important in determining the properties of twisted bilayer graphene," Zhang added. "The question arises: Can we apply this to tune other two-dimensional materials to get unprecedented features? Also, can we combine the photoresponse and the superconductivity in twisted bilayer graphene? For example, can shining a light induce or somehow modulate superconductivity? That will be very interesting to study."

"This new breakthrough will potentially enable a new class of infrared detectors based on graphene with high sensitivity," said Dr. Joe Qiu, program manager for solid-state electronics and electromagnetics at the U.S. Army Research Office (ARO), an element of the U.S. Army Combat Capabilities Development Command's Army Research Laboratory. "These new detectors will potentially impact applications such as night vision, which is of critical importance for the U.S. Army."

###

In addition to the Yale researchers, other authors included scientists from the National Institute for Materials Science in Japan. The ARO, the National Science Foundation and the Office of Naval Research supported the study.

####

For more information, please click here

Contacts:
Amanda Siegfried

972-883-4335

@ut_dallas

Copyright © University of Texas at Austin

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

RELATED JOURNAL ARTICLE:

Related News Press

News and information

When Dirac meets frustrated magnetism August 3rd, 2020

New printing process advances 3D capabilities: Technology aims to improve quality of products used in business, industry and at home July 31st, 2020

TU Graz researchers synthesize nanoparticles tailored for special applications July 31st, 2020

Scientists discover new class of semiconducting entropy-stabilized materials July 31st, 2020

Graphene/ Graphite

Study: Mapping crystal shapes could fast-track 2D materials: Experts call for global effort to clear hurdles to mass production July 27th, 2020

Graphene-Adsorbate van der Waals bonding memory inspires 'smart' graphene sensors July 17th, 2020

Porous graphene ribbons doped with nitrogen for electronics and quantum computing July 10th, 2020

Graphene: It is all about the toppings: To fully exploit the potential of the'wonder material' graphene, it has to be combined with other materials July 10th, 2020

2 Dimensional Materials

Study: Mapping crystal shapes could fast-track 2D materials: Experts call for global effort to clear hurdles to mass production July 27th, 2020

Excitons form superfluid in certain 2D combos: Rice University researchers find ‘paradox’ in ground-state bilayers June 15th, 2020

Videos/Movies

Measuring a tiny quasiparticle is a major step forward for semiconductor technology: Research team publishes latest findings on promising quasiparticles and their interactions June 19th, 2020

Oxford Instruments Asylum Research Jupiter XR Large-Sample AFM Now Includes New Ergo Software Interface for Even Greater Productivity June 18th, 2020

Tiny pump builds polyrotaxanes with precision: Artificial molecular pump gives precise control for materials design June 12th, 2020

Govt.-Legislation/Regulation/Funding/Policy

Scientists discover new class of semiconducting entropy-stabilized materials July 31st, 2020

Nanoreactor strategy generates superior supported bimetallic catalysts July 31st, 2020

Study: Mapping crystal shapes could fast-track 2D materials: Experts call for global effort to clear hurdles to mass production July 27th, 2020

Silver-plated gold nanostars detect early cancer biomarkers: New optical sensing platform can detect genomic cancer biomarkers directly in patient tissues July 24th, 2020

Possible Futures

Way, shape and form: Synthesis conditions define the nanostructure of manganese dioxide July 31st, 2020

New printing process advances 3D capabilities: Technology aims to improve quality of products used in business, industry and at home July 31st, 2020

Scientists discover new class of semiconducting entropy-stabilized materials July 31st, 2020

Nanoreactor strategy generates superior supported bimetallic catalysts July 31st, 2020

Discoveries

When Dirac meets frustrated magnetism August 3rd, 2020

Way, shape and form: Synthesis conditions define the nanostructure of manganese dioxide July 31st, 2020

New printing process advances 3D capabilities: Technology aims to improve quality of products used in business, industry and at home July 31st, 2020

TU Graz researchers synthesize nanoparticles tailored for special applications July 31st, 2020

Announcements

When Dirac meets frustrated magnetism August 3rd, 2020

New printing process advances 3D capabilities: Technology aims to improve quality of products used in business, industry and at home July 31st, 2020

TU Graz researchers synthesize nanoparticles tailored for special applications July 31st, 2020

Scientists discover new class of semiconducting entropy-stabilized materials July 31st, 2020

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

When Dirac meets frustrated magnetism August 3rd, 2020

Way, shape and form: Synthesis conditions define the nanostructure of manganese dioxide July 31st, 2020

New printing process advances 3D capabilities: Technology aims to improve quality of products used in business, industry and at home July 31st, 2020

TU Graz researchers synthesize nanoparticles tailored for special applications July 31st, 2020

Military

Researchers find safeguards for quantum communications July 10th, 2020

A Tremendous Recognition’ Engineer Jonathan Klamkin earns prestigious award from DARPA June 23rd, 2020

Fluorocarbon bonds are no match for light-powered nanocatalyst: Rice U. lab unveils catalyst that can break problematic C-F bonds June 22nd, 2020

Measuring a tiny quasiparticle is a major step forward for semiconductor technology: Research team publishes latest findings on promising quasiparticles and their interactions June 19th, 2020

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project