Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International

Wikipedia Affiliate Button

Home > Press > Scientists discover new class of semiconducting entropy-stabilized materials

Crystal structure of GeSnPbSSeTe, a semiconducting entropy-stabilized chalcogenide alloy. The yellow atoms are cations (Ge, Sn, Pb) and the blue atoms are anions (S, Se, Te). The difference in lightness corresponds to different species of the anions and cations. The configurational entropy from the disorder of both the anion and the cation sublattices stabilizes the single-phase rocksalt solid solution, as demonstrated from first-principles calculations as well as experimental synthesis and characterization.

CREDIT
Logan Williams, Emmanouil Kioupakis, and Zihao Deng, Dept. of Materials Science & Engineering, University of Michigan
Crystal structure of GeSnPbSSeTe, a semiconducting entropy-stabilized chalcogenide alloy. The yellow atoms are cations (Ge, Sn, Pb) and the blue atoms are anions (S, Se, Te). The difference in lightness corresponds to different species of the anions and cations. The configurational entropy from the disorder of both the anion and the cation sublattices stabilizes the single-phase rocksalt solid solution, as demonstrated from first-principles calculations as well as experimental synthesis and characterization. CREDIT Logan Williams, Emmanouil Kioupakis, and Zihao Deng, Dept. of Materials Science & Engineering, University of Michigan

Abstract:
Semiconductors are important materials in numerous functional applications such as digital and analog electronics, solar cells, LEDs, and lasers. Semiconducting alloys are particularly useful for these applications since their properties can be engineered by tuning the mixing ratio or the alloy ingredients. However, the synthesis of multicomponent semiconductor alloys has been a big challenge due to thermodynamic phase segregation of the alloy into separate phases. Recently, University of Michigan researchers Emmanouil (Manos) Kioupakis and Pierre F. P. Poudeu, both in the Materials Science and Engineering Department, utilized entropy to stabilize a new class of semiconducting materials, based on GeSnPbSSeTe high-entropy chalcogenide alloys,[1] a discovery that paves the way for wider adoption of entropy-stabilized semiconductors in functional applications. Their article, "Semiconducting high-entropy chalcogenide alloys with ambi-ionic entropy stabilization and ambipolar doping" was recently published in the journal Chemistry of Materials.

Scientists discover new class of semiconducting entropy-stabilized materials

Ann Arbor, MI | Posted on July 31st, 2020

Entropy, a thermodynamic quantity that quantifies the degree of disorder in a material, has been exploited to synthesize a vast array of novel materials by mixing eachcomponent in an equimolar fashion, from high-entropy metallic alloys to entropy-stabilized ceramics. Despite having a large enthalpy of mixing, these materials can surprisingly crystalize in a single crystal structure, enabled by the large configurational entropy in the lattice. Kioupakis and Poudeu hypothesized that this principle of entropy stabilization can be applied to overcome the synthesis challenges of semiconducting alloys that prefer to segregation into thermodynamically more stable compounds. They tested their hypothesis on a 6-component II-VI chalcogenide alloy derived from the PbTe structure by mixing Ge, Sn, and Pb on the cation site, and S, Se, and Te on the anion site.

Using high throughput first-principles calculations, Kioupakis uncovered the complex interplay between the enthalpy and entropy in GeSnPbSSeTe high-entropy chalcogenide alloys. He found that the large configurational entropy from both anion and cation sublattices stabilizes the alloys into single-phase rocksalt solid solutions at the growth temperature. Despite being metastable at room temperature, these solid solutions can be preserved by fast cooling under ambient conditions. Poudeu later verified the theory predictions by synthesizing the e

quimolar composition (Ge1/3Sn1/3Pb1/3S1/3Se1/3Te1/3) by a two-step solid-state reaction followed by fast quenching in liquid nitrogen. The synthesized power showed well-defined XRD patterns corresponding to a pure rocksalt structure. Furthermore, they observed reversible phase transition between single-phase solid solution and multiple-phase segregation from DSC analysis and temperature dependent XRD, which is a key feature of entropy stabilization.

What makes high-entropy chalcogenide intriguing is their functional properties. Previously discovered high-entropy materials are either conducting metals or insulating ceramics, with a clear dearth in the semiconducting regime. Kioupakis and Poudeu found that. the equimolar GeSnPbSSeTe is an ambipolarly dopable semiconductor, with evidence from a calculated band gap of 0.86 eV and sign reversal of the measured Seebeck coefficient upon p-type doping with Na acceptors and n-type doping with Bi donors. The alloy also exhibits an ultralow thermal conductivity that is nearly independent of temperature. These fascinating functional properties make GeSnPbSSeTe a promising new material to be deployed in electronic, optoelectronic, photovoltaic, and thermoelectric devices.

Entropy stabilization is a general and powerful method to realize a vast array of materials compositions. The discovery of entropy stabilization in semiconducting chalcogenide alloys by the team at UM is only the tip of the iceberg that can pave the way for novel functional applications of entropy-stabilized materials.

###

This study was supported by the National Science Foundation through Grant No. DMR-1561008 (first-principles calculations, synthesis, and characterization) and the Department of Energy, Office of Basic Energy Sciences under Award # DE-SC-00018941 (electronic and thermal transport measurements). The DFT calculations used resources of the National Energy Research Scientific Computing (NERSC) Center, a DOE Office of Science User Facility supported under Contract No. DE-AC02-05CH11231.Related conference presentation:

Zihao Deng, Alan Olvera, Joseph Casamento, Juan Lopez, Logan Williams, Ruiming Lu, Guangsha Shi, Pierre F. P. Poudeu, and Emmanouil Kioupakis. Computational prediction and experimental discovery of semiconducting high-entropy chalcogenide alloys, MRS Fall Meeting 2019, EL04.01.05

####

For more information, please click here

Contacts:
Emmanouil (Manos) Kioupakis

734-945-4456

Copyright © University of Michigan

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Read the related publication:

Related News Press

News and information

Engineers produce a fisheye lens that's completely flat: The single piece of glass produces crisp panoramic images September 22nd, 2020

New design principles for spin-based quantum materials: Criteria for designing targeted quantum materials could support Internet of Things devices and other resource-intensive technologies September 20th, 2020

Shape matters for light-activated nanocatalysts - Study: Pointed tips on aluminum 'octopods' increase catalytic reactivity September 18th, 2020

Aberrant electronic and structural alterations in pressure tuned perovskite NaOsO3 September 18th, 2020

Display technology/LEDs/SS Lighting/OLEDs

Shedding Light on the Development of Efficient Blue-Emitting Semiconductors September 18th, 2020

Ambient light alters refraction in 2D material: Rice researchers find effect that could aid 3D displays, virtual reality, self-driving vehicles September 2nd, 2020

A light bright and tiny: NIST scientists build a better nanoscale LED: New design overcomes long-standing LED efficiency problem -- and can transform into a laser to boot August 14th, 2020

Layer of nanoparticles could improve LED performance and lifetime August 7th, 2020

Govt.-Legislation/Regulation/Funding/Policy

Engineers produce a fisheye lens that's completely flat: The single piece of glass produces crisp panoramic images September 22nd, 2020

New design principles for spin-based quantum materials: Criteria for designing targeted quantum materials could support Internet of Things devices and other resource-intensive technologies September 20th, 2020

Nano-microscope gives first direct observation of the magnetic properties of 2D materials: Discovery means new class of materials and technologies September 18th, 2020

Physicists make electrical nanolasers even smaller September 18th, 2020

Possible Futures

Engineers produce a fisheye lens that's completely flat: The single piece of glass produces crisp panoramic images September 22nd, 2020

New design principles for spin-based quantum materials: Criteria for designing targeted quantum materials could support Internet of Things devices and other resource-intensive technologies September 20th, 2020

Shape matters for light-activated nanocatalysts - Study: Pointed tips on aluminum 'octopods' increase catalytic reactivity September 18th, 2020

Aberrant electronic and structural alterations in pressure tuned perovskite NaOsO3 September 18th, 2020

Chip Technology

New design principles for spin-based quantum materials: Criteria for designing targeted quantum materials could support Internet of Things devices and other resource-intensive technologies September 20th, 2020

Nano-microscope gives first direct observation of the magnetic properties of 2D materials: Discovery means new class of materials and technologies September 18th, 2020

Physicists make electrical nanolasers even smaller September 18th, 2020

FEFU scientists are paving way for future tiny electronics and gadgets August 28th, 2020

Announcements

Engineers produce a fisheye lens that's completely flat: The single piece of glass produces crisp panoramic images September 22nd, 2020

New design principles for spin-based quantum materials: Criteria for designing targeted quantum materials could support Internet of Things devices and other resource-intensive technologies September 20th, 2020

Shape matters for light-activated nanocatalysts - Study: Pointed tips on aluminum 'octopods' increase catalytic reactivity September 18th, 2020

Aberrant electronic and structural alterations in pressure tuned perovskite NaOsO3 September 18th, 2020

Photonics/Optics/Lasers

Who stole the light? Self-induced ultrafast demagnetization limits the amount of light diffracted from magnetic samples at soft x-ray energies September 18th, 2020

Physicists make electrical nanolasers even smaller September 18th, 2020

A phonon laser - coherent vibrations from a self-breathing resonator September 11th, 2020

Quantitatively understanding of angle-resolved polarized Raman scattering from black phosphorus September 11th, 2020

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project