Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Graphene-Adsorbate van der Waals bonding memory inspires 'smart' graphene sensors

(a) Adsorbed CO2 molecules on graphene sensor (b) van der Waals (vdW) interaction between adsorbed molecules and graphene at zero electric field (c) vdW interaction between adsorbed molecules and graphene with electric field.

CREDIT
JAIST
(a) Adsorbed CO2 molecules on graphene sensor (b) van der Waals (vdW) interaction between adsorbed molecules and graphene at zero electric field (c) vdW interaction between adsorbed molecules and graphene with electric field. CREDIT JAIST

Abstract:
Monolayer graphene, an atomic-layer thick sheet of carbon has found immense applications in diverse fields including chemical sensors, detecting single molecule adsorption events electronically. Therefore, monitoring physisorbed molecule induced changes of the electrical response of graphene has become ubiquitous in graphene based sensors. Electric field tuning of the physisorbed molecule-graphene interaction results in enhanced gas sensing due to unique electric field dependent charge-transfer between the adsorbed gas and graphene. Molecular identification in graphene sensors was predicted based on this unique electrically tunable charge-transfer, which is a signature for different adsorbed molecules. Nevertheless, to achieve molecular identification functionality in graphene sensors, an understanding of the gas adsorption/desorption events and retention of the graphene-gas molecule interaction after turning off the electric field is desired. Until now, the graphene-gas molecule bonding interactions were considered randomized by ambience thermal energy after the electric field is turned off, which is not surprising since these interactions are van der Waals (vdW) bonding and so inherently weak. Nevertheless, this assumed thermal randomization of the graphene-gas molecule vdW bonding was unverified experimentally and a major drawback towards electrically tunable charge-transfer based molecular identification in graphene gas sensors.

Graphene-Adsorbate van der Waals bonding memory inspires 'smart' graphene sensors

Ishikawa, Japan | Posted on July 17th, 2020

To clarify the bonding retention of adsorbed gas molecules on graphene with and without electric field tuning, Osazuwa Gabriel Agbonlahor (current doctoral student), Tomonori Imamura (graduated master's student), Dr. Manoharan Murugananthan (Senior Lecturer), and Professor Hiroshi Mizuta of Mizuta Laboratory at the Japan Advanced Institute of Science and Technology (JAIST) monitored the time-dependent vdW interaction decay of adsorbed CO2 molecules on graphene at different electric fields. Using the electric field to tune the interaction between the adsorbed gas and graphene, the charge-transfer between the adsorbed CO2 molecules and graphene was monitored while the tuning electric field was turned on and after it was turned off. Remarkably, the graphene-gas molecule van der Waals interactions were retained hours after the electric field was turned off, demonstrating both charge-transfer and carrier scattering retention characteristic of the previously applied electric field magnitude and direction i.e. the adsorbed CO2 molecules demonstrated a 'vdW bonding memory'. Due to this bonding memory, the charge-transfer and scattering properties of the adsorbed gas molecules on graphene can be studied hours after the electric field is turned off which is critical for identifying adsorbed molecules based on their signature charge-transfer response to an applied electric field. Furthermore, the long bonding retention time (over 2h) of these electrically tuned adsorbed molecules, sets graphene-based sensors apart as platforms for developing 'smart' sensors suitable for 'beyond-sensing' applications in memory devices and conformational switches.

####

For more information, please click here

Contacts:
Hiroshi Mizuta

81-076-151-1571

Copyright © Japan Advanced Institute of Science and Technology (JAIST)

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

RELATED JOURNAL ARTICLE:

Related News Press

News and information

CEA-Leti Reports Machine-Learning Breakthrough That Opens Way to Edge Learning: Article in Nature Electronics Details Method that Takes Advantage of RRAM Non-Idealities To Create Intelligent Systems that Have Potential Medical-Diagnostic Applications January 20th, 2021

Arrowhead Pharmaceuticals to Webcast Fiscal 2021 First Quarter Results January 20th, 2021

Scientists synthetize new material for high-performance supercapacitors January 19th, 2021

Keeping the costs of superconducting magnets down using ultrasound: Scientists show ultrasonication is a cost-effective approach to enhance the properties of magnesium diboride superconductors January 15th, 2021

Graphene/ Graphite

New way to control electrical charge in 2D materials: Put a flake on it January 15th, 2021

Ultra-fast gas flows through tiniest holes in 2D membranes: Researchers from the National Graphene Institute at the University of Manchester and the University of Pennsylvania identify ultra-fast gas flows through atomic-scale apertures in 2D membrane and validate a century-old e December 18th, 2020

RUDN University physicists described a new type of amorphous solid bodies December 4th, 2020

New platform generates hybrid light-matter excitations in highly charged graphene December 2nd, 2020

Possible Futures

CEA-Leti Reports Machine-Learning Breakthrough That Opens Way to Edge Learning: Article in Nature Electronics Details Method that Takes Advantage of RRAM Non-Idealities To Create Intelligent Systems that Have Potential Medical-Diagnostic Applications January 20th, 2021

Arrowhead Pharmaceuticals to Webcast Fiscal 2021 First Quarter Results January 20th, 2021

Scientists synthetize new material for high-performance supercapacitors January 19th, 2021

Keeping the costs of superconducting magnets down using ultrasound: Scientists show ultrasonication is a cost-effective approach to enhance the properties of magnesium diboride superconductors January 15th, 2021

Memory Technology

Discovery suggests new promise for nonsilicon computer transistors: Once deemed suitable only for high-speed communication systems, an alloy called InGaAs might one day rival silicon in high-performance computing December 9th, 2020

New insights into memristive devices by combining incipient ferroelectrics and graphene November 27th, 2020

Multi-state data storage leaving binary behind: Stepping 'beyond binary' to store data in more than just 0s and 1s October 16th, 2020

Manipulating non-magnetic atoms in a chromium halide enables tuning of magnetic properties: New approach creates synthetic layered magnets with unprecedented level of control over their magnetic properties July 24th, 2020

Discoveries

CEA-Leti Reports Machine-Learning Breakthrough That Opens Way to Edge Learning: Article in Nature Electronics Details Method that Takes Advantage of RRAM Non-Idealities To Create Intelligent Systems that Have Potential Medical-Diagnostic Applications January 20th, 2021

Scientists synthetize new material for high-performance supercapacitors January 19th, 2021

Scientists' discovery is paving the way for novel ultrafast quantum computers January 15th, 2021

Physicists propose a new theory to explain one dimensional quantum liquids formation January 15th, 2021

Announcements

CEA-Leti Reports Machine-Learning Breakthrough That Opens Way to Edge Learning: Article in Nature Electronics Details Method that Takes Advantage of RRAM Non-Idealities To Create Intelligent Systems that Have Potential Medical-Diagnostic Applications January 20th, 2021

Arrowhead Pharmaceuticals to Webcast Fiscal 2021 First Quarter Results January 20th, 2021

Scientists synthetize new material for high-performance supercapacitors January 19th, 2021

Keeping the costs of superconducting magnets down using ultrasound: Scientists show ultrasonication is a cost-effective approach to enhance the properties of magnesium diboride superconductors January 15th, 2021

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Scientists synthetize new material for high-performance supercapacitors January 19th, 2021

Conductive nature in crystal structures revealed at magnification of 10 million times: University of Minnesota study opens up possibilities for new transparent materials that conduct electricity January 15th, 2021

Quantum computers to study the functioning of the molecules of life: A team of theoretical physicists from the University of Trento has shown that it is possible to use quantum computers to simulate processes of great biological importance, such as changes in the shape of protein January 15th, 2021

Keeping the costs of superconducting magnets down using ultrasound: Scientists show ultrasonication is a cost-effective approach to enhance the properties of magnesium diboride superconductors January 15th, 2021

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project