Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International

Wikipedia Affiliate Button

Home > Press > Scaling up the quantum chip: MIT engineers develop a hybrid process that connects photonics with 'artificial atoms,' to produce the largest quantum chip of its type

This graphic depicts a stylized rendering of the quantum photonic chip and its assembly process. The bottom half of the image shows a functioning quantum micro-chiplet (QMC), which emits single-photon pulses that are routed and manipulated on a photonic integrated circuit (PIC). The top half of the image shows how this chip is made: Diamond QMCs are fabricated separately and then transferred into the PIC.

Credit: Noel H Wan
This graphic depicts a stylized rendering of the quantum photonic chip and its assembly process. The bottom half of the image shows a functioning quantum micro-chiplet (QMC), which emits single-photon pulses that are routed and manipulated on a photonic integrated circuit (PIC). The top half of the image shows how this chip is made: Diamond QMCs are fabricated separately and then transferred into the PIC. Credit: Noel H Wan

Abstract:
MIT researchers have developed a process to manufacture and integrate "artificial atoms," created by atomic-scale defects in microscopically thin slices of diamond, with photonic circuitry, producing the largest quantum chip of its type.

Scaling up the quantum chip: MIT engineers develop a hybrid process that connects photonics with 'artificial atoms,' to produce the largest quantum chip of its type

Cambridge, MA | Posted on July 10th, 2020

The accomplishment "marks a turning point" in the field of scalable quantum processors, says Dirk Englund, an associate professor in MIT's Department of Electrical Engineering and Computer Science. Millions of quantum processors will be needed to build quantum computers, and the new research demonstrates a viable way to scale up processor production, he and his colleagues note.

Unlike classical computers, which process and store information using bits represented by either 0s and 1s, quantum computers operate using quantum bits, or qubits, which can represent 0, 1, or both at the same time. This strange property allows quantum computers to simultaneously perform multiple calculations, solving problems that would be intractable for classical computers.

The qubits in the new chip are artificial atoms made from defects in diamond, which can be prodded with visible light and microwaves to emit photons that carry quantum information. The process, which Englund and his team describe in Nature, is a hybrid approach, in which carefully selected "quantum micro chiplets" containing multiple diamond-based qubits are placed on an aluminum nitride photonic integrated circuit.

"In the past 20 years of quantum engineering, it has been the ultimate vision to manufacture such artificial qubit systems at volumes comparable to integrated electronics," Englund says. "Although there has been remarkable progress in this very active area of research, fabrication and materials complications have thus far yielded just two to three emitters per photonic system."

Using their hybrid method, Englund and colleagues were able to build a 128-qubit system -- the largest integrated artificial atom-photonics chip yet.

Other authors on the Nature paper include MIT researchers Noel H. Wan, Tsung-Ju Lu, Kevin C. Chen, Michael P. Walsh, Matthew E. Trusheim, Lorenzo De Santis, Eric A. Bersin, Isaac B. Harris, Sara L. Mouradian and Ian R. Christen; with Edward S. Bielejec at Sandia National Laboratories.

Quality control for chiplets

The artificial atoms in the chiplets consist of color centers in diamonds, defects in diamond's carbon lattice where adjacent carbon atoms are missing, with their spaces either filled by a different element or left vacant. In the MIT chiplets, the replacement elements are germanium and silicon. Each center functions as an atom-like emitter whose spin states can form a qubit. The artificial atoms emit colored particles of light, or photons, that carry the quantum information represented by the qubit.

Diamond color centers make good solid-state qubits, but "the bottleneck with this platform is actually building a system and device architecture that can scale to thousands and millions of qubits," Wan explains. "Artificial atoms are in a solid crystal, and unwanted contamination can affect important quantum properties such as coherence times. Furthermore, variations within the crystal can cause the qubits to be different from one another, and that makes it difficult to scale these systems."

Instead of trying to build a large quantum chip entirely in diamond, the researchers decided to take a modular and hybrid approach. "We use semiconductor fabrication techniques to make these small chiplets of diamond, from which we select only the highest quality qubit modules," says Wan. "Then we integrate those chiplets piece-by-piece into another chip that 'wires' the chiplets together into a larger device."

The integration takes place on a photonic integrated circuit, which is analogous to an electronic integrated circuit but uses photons rather than electrons to carry information. Photonics provides the underlying architecture to route and switch photons between modules in the circuit with low loss. The circuit platform is aluminum nitride, rather than the traditional silicon of some integrated circuits.

Using this hybrid approach of photonic circuits and diamond chiplets, the researchers were able to connect 128 qubits on one platform. The qubits are stable and long-lived, and their emissions can be tuned within the circuit to produce spectrally indistinguishable photons, according to Wan and colleagues.

A modular approach

While the platform offers a scalable process to produce artificial atom-photonics chips, the next step will be to "turn it on," so to speak, to test its processing skills.

"This is a proof of concept that solid-state qubit emitters are very scalable quantum technologies," says Wan. "In order to process quantum information, the next step would be to control these large numbers of qubits and also induce interactions between them."

The qubits in this type of chip design wouldn't necessarily have to be these particular diamond color centers. Other chip designers might choose other types of diamond color centers, atomic defects in other semiconductor crystals like silicon carbide, certain semiconductor quantum dots, or rare-earth ions in crystals. "Because the integration technique is hybrid and modular, we can choose the best material suitable for each component, rather than relying on natural properties of only one material, thus allowing us to combine the best properties of each disparate material into one system," says Lu.

Finding a way to automate the process and demonstrate further integration with optoelectronic components such as modulators and detectors will be necessary to build even bigger chips necessary for modular quantum computers and multichannel quantum repeaters that transport qubits over long distances, the researchers say.

###

Written by Becky Ham, MIT News correspondent

####

For more information, please click here

Contacts:
Abby Abazorius

617-253-2709

@MIT

Copyright © Massachusetts Institute of Technology

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Timekeeping theory combines quantum clocks and Einstein's relativity: Research reveals new time dilation phenomenon October 23rd, 2020

New test method to standardize immunological evaluation of nucleic acid nanoparticles: Researchers believe accurate, affordable and easily reproduced protocol for assessing immune effects could further research collaboration and advance therapeutic use of new medicines October 23rd, 2020

Cicada-inspired waterproof surfaces closer to reality, researchers report October 23rd, 2020

Trailblazing theoretical physicist Sylvester James Gates Jr. is among speakers at nanotechnology symposium: Annual event moves to virtual format, open to attendees worldwide at no charge Oct. 29 October 23rd, 2020

Possible Futures

Timekeeping theory combines quantum clocks and Einstein's relativity: Research reveals new time dilation phenomenon October 23rd, 2020

New test method to standardize immunological evaluation of nucleic acid nanoparticles: Researchers believe accurate, affordable and easily reproduced protocol for assessing immune effects could further research collaboration and advance therapeutic use of new medicines October 23rd, 2020

Cicada-inspired waterproof surfaces closer to reality, researchers report October 23rd, 2020

Trailblazing theoretical physicist Sylvester James Gates Jr. is among speakers at nanotechnology symposium: Annual event moves to virtual format, open to attendees worldwide at no charge Oct. 29 October 23rd, 2020

Chip Technology

Deca Partners with ADTEC Engineering to Enhance Adaptive Patterning™ for 2µm Chiplet Scaling October 20th, 2020

Multi-state data storage leaving binary behind: Stepping 'beyond binary' to store data in more than just 0s and 1s October 16th, 2020

GLOBALFOUNDRIES Accelerating Innovation in IoT and Wearables with Adaptive Body Bias Feature on 22FDX Platform October 16th, 2020

GREENWAVES TECHNOLOGIES Announces Next Generation GAP9 Hearables Platform Using GLOBALFOUNDRIES 22FDX Solution October 16th, 2020

Quantum Computing

Time crystals lead researchers to future computational work October 23rd, 2020

The most sensitive and fastest graphene microwave bolometer September 30th, 2020

The ICN2 co-leads a roadmap on quantum materials September 29th, 2020

Spin clean-up method brings practical quantum computers closer to reality: Osaka City University develops a quantum algorithm that removes pesky spin contaminants from chemical calculations on quantum computers September 25th, 2020

Optical computing/Photonic computing

Surface waves can help nanostructured devices keep their cool October 12th, 2020

Polarimetric parity-time-symmetric photonic system October 9th, 2020

Landmark discovery could improve Army lasers, precision sensors September 29th, 2020

Physicists make electrical nanolasers even smaller September 18th, 2020

Discoveries

Timekeeping theory combines quantum clocks and Einstein's relativity: Research reveals new time dilation phenomenon October 23rd, 2020

New test method to standardize immunological evaluation of nucleic acid nanoparticles: Researchers believe accurate, affordable and easily reproduced protocol for assessing immune effects could further research collaboration and advance therapeutic use of new medicines October 23rd, 2020

Cicada-inspired waterproof surfaces closer to reality, researchers report October 23rd, 2020

Trailblazing theoretical physicist Sylvester James Gates Jr. is among speakers at nanotechnology symposium: Annual event moves to virtual format, open to attendees worldwide at no charge Oct. 29 October 23rd, 2020

Announcements

Timekeeping theory combines quantum clocks and Einstein's relativity: Research reveals new time dilation phenomenon October 23rd, 2020

New test method to standardize immunological evaluation of nucleic acid nanoparticles: Researchers believe accurate, affordable and easily reproduced protocol for assessing immune effects could further research collaboration and advance therapeutic use of new medicines October 23rd, 2020

Cicada-inspired waterproof surfaces closer to reality, researchers report October 23rd, 2020

Trailblazing theoretical physicist Sylvester James Gates Jr. is among speakers at nanotechnology symposium: Annual event moves to virtual format, open to attendees worldwide at no charge Oct. 29 October 23rd, 2020

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Scientists from NUST MISIS manage to improve metallic glasses October 23rd, 2020

Time crystals lead researchers to future computational work October 23rd, 2020

Timekeeping theory combines quantum clocks and Einstein's relativity: Research reveals new time dilation phenomenon October 23rd, 2020

Cicada-inspired waterproof surfaces closer to reality, researchers report October 23rd, 2020

Photonics/Optics/Lasers

Revealing the reason behind jet formation at the tip of laser optical fiber October 16th, 2020

Surface waves can help nanostructured devices keep their cool October 12th, 2020

Polarimetric parity-time-symmetric photonic system October 9th, 2020

Landmark discovery could improve Army lasers, precision sensors September 29th, 2020

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project