Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International

Wikipedia Affiliate Button

Home > Press > Biosynthetic sustainable hierarchical solar steam generator

Abstract:
Water is vital to the survival of life. However, water scarcity has become a major problem in modern society. Today, one-fifth of the world's population lives in water- deficient areas, especially in areas where there is no electricity. For people in such areas, access to clean drinking water is often a difficult task. Therefore, they urgently need an efficient, low-cost, sustainable, and easily accessible technologies and devices to generate clean water. Solar energy is one of the most abundant and widespread resources on earth. Solar-powered water purification technology is simple and efficient to obtain clean drinking water from non-drinkable water sources such as lake water, sewage or seawater.

Biosynthetic sustainable hierarchical solar steam generator

Hefei, China | Posted on July 10th, 2020

Nowadays, a team led by Prof. Shu-Hong Yu from the University of Science and Technology of China (USTC) report an efficient and sustainable biomimetic hierarchical solar steam generator (HSSG) based on bacterial cellulose (BC) nanocomposites. This HSSG is fabricated through a one-step aerosol-assisted biosynthesis process. The designed microbial synthesis process is successfully combined with the deposition of nanomaterials, and a sophisticated biomimetic hierarchical structure is constructed simply and efficiently. The hierarchical structure of this HSSG contains three continuous layers with different functions, including light absorbing layer of carbon nanotubes/BC, thermal insulation layer of glass bubbles /BC and wood substrate for supporting and water transporting. In HSSG, three-dimensional (3D) cellulose nanofiber network of BC hydrogel significantly reduced the energy consumption to convert the liquid water into vapor and accelerate the vaporization of water. Owing to the hierarchical structure design and reduced vaporization enthalpy of nanocomposites of HSSG, a high evaporation rate of 2.9 kg m-2 h-1 and solar-to-vapor efficiency of 80 % can be achieved.

In this HSSG, the hierarchical structure nanocomposites grow on the wood substrate and are tightly combined with the wood substrate through BC network of nanofibers. BC nanofibers crosslink with the cellulose of wood forming infiltrating layer in wood, which acts as a strong binder between wood and BC nanocomposite layers. This structure ensures the fast water transportation from wood to the BC nanocomposite layers and makes them firmly attached to wood substrate, which provides the structural foundation of thermal insulation and water transportation. Glass bubbles are microscale hollow glass spheres, which provides the structural foundation of thermal insulation and water transportation. On the top of the device, the carbon nanotubes and BC nanocomposite layer have sophisticated interlaced structure where carbon nanotubes and cellulose nanofibers form double-network of nanofibers. In this double-network, carbon nanotubes function as highly effective solar light absorber and BC nanofibers are used to transport water and reduce the energy consumption of evaporation. This multilayered structure of wood, glass bubbles /BC and carbon nanotubes/BC is designed to achieve fast water transportation, thermal management, effective light absorption and reduced vaporization energy consumption. Moreover, to systematically investigate the relation between evaporation rate, energy efficiency and energy consumption of evaporation, the team provides a novel two-dimension chart with guide lines showing different enthalpy of vaporization. This theoretical analysis method shows potential for analyzing the contributions of different functional parts in solar steam generator devices for evaporation rate.

Comparing with other technology of solar powered water purification, HSSG have great advantage on evaporation rate, energy efficiency, sustainability and cost, which make it a promising technology for future water purification.

####

For more information, please click here

Contacts:
Jane FAN Qiong

86-551-636-07280

Copyright © University of Science and Technology of China (USTC)

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

When Dirac meets frustrated magnetism August 3rd, 2020

New printing process advances 3D capabilities: Technology aims to improve quality of products used in business, industry and at home July 31st, 2020

TU Graz researchers synthesize nanoparticles tailored for special applications July 31st, 2020

Scientists discover new class of semiconducting entropy-stabilized materials July 31st, 2020

Possible Futures

Physicists find misaligned carbon sheets yield unparalleled properties July 31st, 2020

Way, shape and form: Synthesis conditions define the nanostructure of manganese dioxide July 31st, 2020

New printing process advances 3D capabilities: Technology aims to improve quality of products used in business, industry and at home July 31st, 2020

Scientists discover new class of semiconducting entropy-stabilized materials July 31st, 2020

Nanotubes/Buckyballs/Fullerenes/Nanorods

Purifying water with the help of wood, bacteria and the sun July 10th, 2020

Flexible material shows potential for use in fabrics to heat, cool July 3rd, 2020

Prodigiosin-based solution has selective activity against cancer cells: A new nanoformulation was described by Kazan University's Bionanotechnology Lab in Frontiers in Bioengineering and Biotechnology June 12th, 2020

Exotic nanotubes move in less-mysterious ways: Rice scientists, engineers show boron nitride’s promise for composites, biomedical applications June 2nd, 2020

Discoveries

When Dirac meets frustrated magnetism August 3rd, 2020

Way, shape and form: Synthesis conditions define the nanostructure of manganese dioxide July 31st, 2020

New printing process advances 3D capabilities: Technology aims to improve quality of products used in business, industry and at home July 31st, 2020

TU Graz researchers synthesize nanoparticles tailored for special applications July 31st, 2020

Announcements

When Dirac meets frustrated magnetism August 3rd, 2020

New printing process advances 3D capabilities: Technology aims to improve quality of products used in business, industry and at home July 31st, 2020

TU Graz researchers synthesize nanoparticles tailored for special applications July 31st, 2020

Scientists discover new class of semiconducting entropy-stabilized materials July 31st, 2020

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

When Dirac meets frustrated magnetism August 3rd, 2020

Way, shape and form: Synthesis conditions define the nanostructure of manganese dioxide July 31st, 2020

New printing process advances 3D capabilities: Technology aims to improve quality of products used in business, industry and at home July 31st, 2020

TU Graz researchers synthesize nanoparticles tailored for special applications July 31st, 2020

Energy

TU Graz researchers synthesize nanoparticles tailored for special applications July 31st, 2020

'Blinking" crystals may convert CO2 into fuels: Unusual nanoparticles could benefit the quest to build a quantum computer July 17th, 2020

Membrane technology could cut emissions and energy use in oil refining July 17th, 2020

Graphene: It is all about the toppings: To fully exploit the potential of the'wonder material' graphene, it has to be combined with other materials July 10th, 2020

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

Russian scientists identified energy storage mechanism of sodium-ion battery anode July 24th, 2020

New cobalt-free lithium-ion battery reduces costs without sacrificing performance July 17th, 2020

A path to new nanofluidic devices applying spintronics technology: Substantial increase in the energy conversion efficiency of hydrodynamic power generation via spin currents July 3rd, 2020

Extremely low thermal conductivity in 1D soft chain structure BiSeX (X = Br, I) June 19th, 2020

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project