Home > Press > Printed perovskite LEDs: An innovative technique towards a new standard process of electronics manufacturing
![]() |
Graphic representation of the printing process for the perovskite LED. © Claudia Rothkirch/HU Berlin |
Abstract:
Microelectronics utilise various functional materials whose properties make them suitable for specific applications. For example, transistors and data storage devices are made of silicon, and most photovoltaic cells used for generating electricity from sunlight are also currently made of this semiconductor material. In contrast, compound semiconductors such as gallium nitride are used to generate light in optoelectronic elements such as light-emitting diodes (LEDs). The manufacturing processes also different for the various classes of materials.
Transcending the materials and methods maze
Hybrid perovskite materials promise simplification - by arranging the organic and inorganic components of semiconducting crystal in a specific structure. "They can be used to manufacture all kinds of microelectronic components by modifying their composition", says Prof. Emil List-Kratochvil, head of a Joint Research Group at HZB and Humboldt-Universität.
What's more, processing perovskite crystals is comparatively simple. "They can be produced from a liquid solution, so you can build the desired component one layer at a time directly on the substrate", the physicist explains.
First solar cells from an inkjet printer, now light-emitting diodes too
Scientists at HZB have already shown in recent years that solar cells can be printed from a solution of semiconductor compounds - and are worldwide leaders in this technology today. Now for the first time, the joint team of HZB and HU Berlin has succeeded in producing functional light-emitting diodes in this manner. The research group used a metal halide perovskite for this purpose. This is a material that promises particularly high efficiency in generating light - but on the other hand is difficult to process.
"Until now, it has not been possible to produce these kinds of semiconductor layers with sufficient quality from a liquid solution", says List-Kratochvil. For example, LEDs could be printed just from organic semiconductors, but these provide only modest luminosity. "The challenge was how to cause the salt-like precursor that we printed onto the substrate to crystallise quickly and evenly by using some sort of an attractant or catalyst", explains the scientist. The team chose a seed crystal for this purpose: a salt crystal that attaches itself to the substrate and triggers formation of a gridwork for the subsequent perovskite layers.
Significantly better optical and electronic characteristics
In this way, the researchers created printed LEDs that possess far higher luminosity and considerably better electrical properties than could be previously achieved using additive manufacturing processes. But for List-Kratochvil, this success is only an intermediate step on the road to future micro- and optoelectronics that he believes will be based exclusively on hybrid perovskite semiconductors. "The advantages offered by a single universally applicable class of materials and a single cost-effective and simple process for manufacturing any kind of component are striking", says the scientist. He is therefore planning to eventually manufacture all important electronic components this way in the laboratories of HZB and HU Berlin.
List-Kratochvil is Professor of Hybrid Devices at the Humboldt-Universität zu Berlin and head of a Joint Lab founded in 2018 that is operated by HU together with HZB. In addition, a team jointly headed by List-Kratochvil and HZB scientist Dr. Eva Unger is working in the Helmholtz Innovation Lab HySPRINT on the development of coating and printing processes - also known in technical jargon as "additive manufacturing" - for hybrid perovskites. These are crystals possessing a perovskite structure that contain both inorganic and organic components.
###
The work was published in Materials Horizons, the journal of the Royal Society of Chemistry, in an article entitled "Finally, inkjet-printed metal-halide perovskite LEDs - utilizing seed-crystal templating of salty PEDOT:PSS" by Felix Hermerschmidt, Florian Mathies, Vincent R. F. Schröder, Carolin Rehermann, Nicolas Zorn Morales, Eva L. Unger, Emil J. W. List-Kratochvil.
####
For more information, please click here
Contacts:
Emil List-Kratochvil
49-302-093-7697
@HZBde
Copyright © Helmholtz-Zentrum Berlin für Materialien und Energie
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related Links |
Related News Press |
News and information
Quantum quirk yields giant magnetic effect, where none should exist: Study opens window into the landscape of extreme topological matter March 1st, 2021
How photoblueing disturbs microscopy February 26th, 2021
Changing the silkworm's diet to spin stronger silk February 26th, 2021
Perovskites
CsPbBrI2 perovskites with low energy loss for high-performance indoor and outdoor photovoltaics December 1st, 2020
3D & 4D printing/Additive-manufacturing
Dynamic 3D printing process features a light-driven twist: Light provides freedom to control each layer and improves precision and speed February 4th, 2021
Russian scientists improve 3D printing technology for aerospace composites using oil waste November 27th, 2020
Display technology/LEDs/SS Lighting/OLEDs
An LED that can be integrated directly into computer chips: The advance could cut production costs and reduce the size of microelectronics for sensing and communication December 14th, 2020
Possible Futures
Quantum quirk yields giant magnetic effect, where none should exist: Study opens window into the landscape of extreme topological matter March 1st, 2021
Bioinformatics tool accurately tracks synthetic: DNA Computer scientists show benefits of bioinformatics with PlasmidHawk February 26th, 2021
How photoblueing disturbs microscopy February 26th, 2021
Changing the silkworm's diet to spin stronger silk February 26th, 2021
Chip Technology
Quantum quirk yields giant magnetic effect, where none should exist: Study opens window into the landscape of extreme topological matter March 1st, 2021
Engineering the boundary between 2D and 3D materials: Cutting-edge microscope helps reveal ways to control the electronic properties of atomically thin materials February 26th, 2021
Optical computing/Photonic computing
New study investigates photonics for artificial intelligence and neuromorphic computing February 1st, 2021
Bringing Atoms to a Standstill: NIST Miniaturizes Laser Cooling January January 21st, 2021
USTC develops ultrahigh-performance plasmonic metal-oxide materials January 11th, 2021
Discoveries
Quantum quirk yields giant magnetic effect, where none should exist: Study opens window into the landscape of extreme topological matter March 1st, 2021
Materials/Metamaterials
Quantum quirk yields giant magnetic effect, where none should exist: Study opens window into the landscape of extreme topological matter March 1st, 2021
Changing the silkworm's diet to spin stronger silk February 26th, 2021
Announcements
Quantum quirk yields giant magnetic effect, where none should exist: Study opens window into the landscape of extreme topological matter March 1st, 2021
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
Quantum quirk yields giant magnetic effect, where none should exist: Study opens window into the landscape of extreme topological matter March 1st, 2021
Bioinformatics tool accurately tracks synthetic: DNA Computer scientists show benefits of bioinformatics with PlasmidHawk February 26th, 2021
How photoblueing disturbs microscopy February 26th, 2021
Changing the silkworm's diet to spin stronger silk February 26th, 2021
Solar/Photovoltaic
USTC develops ultrahigh-performance plasmonic metal-oxide materials January 11th, 2021
Engineers find antioxidants improve nanoscale visualization of polymers January 8th, 2021
Printing/Lithography/Inkjet/Inks/Bio-printing/Dyes
Weak force has strong impact on nanosheets: Rice lab finds van der Waals force can deform nanoscale silver for optics, catalytic use December 15th, 2020
Materials scientists learn how to make liquid crystal shape-shift September 25th, 2020
New printing process advances 3D capabilities: Technology aims to improve quality of products used in business, industry and at home July 31st, 2020
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |