Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International

Wikipedia Affiliate Button

Home > Press > An EPiQS Pursuit: Physicist Andrea Young is chosen to receive an Experimental Investigator award from the Moore Foundation

Andrea Young

Photo Credit: COURTESY IMAGE
Andrea Young Photo Credit: COURTESY IMAGE

Abstract:
UC Santa Barbara condensed matter physicist Andrea Young conducts his work at the boundary of theory and actuality, as he builds instrumentation to probe for signature quantum properties in advanced materials. Using his expertise in the realm of graphene systems, he and his research group also work to coax as-yet hypothetical behaviors from the two-dimensional material’s atoms that, if found, could lead to advances in realms such as quantum sensing and topological quantum computing.

An EPiQS Pursuit: Physicist Andrea Young is chosen to receive an Experimental Investigator award from the Moore Foundation

Santa Barbara, CA | Posted on May 28th, 2020

Young’s experience and expertise have caught the attention of The Gordon and Betty Moore Foundation. And, as a result, he has been selected as one of 20 Experimental Investigators in the Moore Foundation’s Emergent Phenomena in Quantum Systems (EPiQS) Initiative, which aims to support U.S. experimental scientists’ pursuit of “innovative, risky research with a potential for significant advances in the concepts and methods used to investigate quantum materials.”

“The Moore Foundation is doing something really special — giving large grants with true flexibility and freedom,” Young said. “I am flattered to have been chosen and excited to make the most of this with some risky projects I’ve been thinking about for a long time!”

Selected through a national competition with an extensive peer review process, each Experimental Investigator will receive $1.6 million in unrestricted support over the next five years.

“The Experimental Investigator awards are the largest grant portfolio within the EPiQS initiative,” said Amalia Fernandez-Pañella, program officer of the EPiQS Initiative. “We expect that such substantial, stable and flexible support will propel quantum materials research forward and unleash the creativity of the investigators.”

Young’s drive to discover has already led to important advances in his field. He has been credited as one of the pioneers of van der Waals heterostructures — layers of atom-thick materials held together by a weak distance-dependent attraction between the atoms in each layer — which has since influenced how scientists approach 2D systems in general. More recently, he and his research group have reported the discovery of a variety of new quantum phases of electrons, spanning new forms of magnetism, to states harboring non-Abelian anyons — collective excitations that could pave the way toward a logic system for topological quantum computers. Support from the Experimental Investigator award will enable him to range farther into the 2D universe, building tools to probe these phases of matter on nanometer length scales and resolve their dynamics on picosecond timescales.

“The Moore Foundation has recognized the fantastic opportunities at UCSB, where we have seen spectacular growth of multidisciplinary efforts in quantum materials in the last few years,” said Claudio Campagnari, chair of the UC Santa Barbara Department of Physics. “And, of course, we're pleased the foundation will be supporting the development of Andrea's unique instrumentation, which promises to provide radically new windows into the inner workings of correlated electron physics. We look forward to the impacts of the Foundation's support on the whole quantum materials ecosystem at UCSB in the coming years.”

The EPiQS cohort’s research will cover a broad spectrum of research questions, types of materials systems, and complementary experimental approaches. The investigators will advance experimental probes of quantum states in materials; elucidate emergent phenomena observed in systems with strong electron interactions; investigate light-induced states of matter; explore the vast space of two-dimensional layered structures; and illuminate the role of quantum entanglement in exotic systems such as quantum spin liquids. In addition, the investigators will participate in EPiQS community-building activities, which include investigator symposia, topical workshops and the QuantEmX scientist exchange program.

Since 2013, EPiQS has supported an integrated research program that includes materials synthesis, experiment and theory, and that crosses the boundaries between physics, chemistry and materials science. The second phase of the initiative was kicked off earlier this year with the launch of two major grant portfolios: Materials Synthesis Investigators and Theory Centers, including one at UCSB’s Kavli Institute for Theoretical Physics. The twenty newly inaugurated Experimental Investigators will join these grantees to form a vibrant, collaborative community that strives to push the entire field towards a new frontier.

“The first cohort of EPiQS Experimental Investigators made advances that changed the landscape of quantum materials, and I expect no less from this second cohort.” said Dušan Pejaković, Ph.D., director of the EPiQS Initiative. “Emergent phenomena appear when a large number of constituents interact strongly, whether these constituents are electrons in materials, or the brilliant scientists trying to crack the mysteries of materials.”

The Gordon and Betty Moore Foundation fosters path-breaking scientific discovery, environmental conservation, patient care improvements and preservation of the special character of the Bay Area. For more information visit Moore.org or follow @MooreFound.

####

For more information, please click here

Contacts:
Sonia Fernandez

(805) 893-4765

sonia(dot)fernandez(at)ucsb(dot)edu

Copyright © University of California, Santa Barbara

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

2 Dimensional Materials

Nano-microscope gives first direct observation of the magnetic properties of 2D materials: Discovery means new class of materials and technologies September 18th, 2020

Understanding electron transport in graphene nanoribbons: New understanding of the electrical properties of graphene nanoribbons (GRBs), when bounded with aromatic molecules, could have significant benefits in the development of chemosensors and personalized medicine September 11th, 2020

News and information

Nano-microscope gives first direct observation of the magnetic properties of 2D materials: Discovery means new class of materials and technologies September 18th, 2020

Physicists make electrical nanolasers even smaller September 18th, 2020

Shape matters for light-activated nanocatalysts - Study: Pointed tips on aluminum 'octopods' increase catalytic reactivity September 18th, 2020

Aberrant electronic and structural alterations in pressure tuned perovskite NaOsO3 September 18th, 2020

Quantum Physics

Quirky response to magnetism presents quantum physics mystery: Magnetic topological insulators could be just right for making qubits, but this one doesn't obey the rules September 11th, 2020

Get diamonds, take temperature: Quantum thermometer using nanodiamonds senses a 'fever' in tiny worms C. elegans September 11th, 2020

Physics

Quirky response to magnetism presents quantum physics mystery: Magnetic topological insulators could be just right for making qubits, but this one doesn't obey the rules September 11th, 2020

Painting With Light: Novel Nanopillars Precisely Control the Color and Intensity of Transmitted Light September 4th, 2020

Possible Futures

Nano-microscope gives first direct observation of the magnetic properties of 2D materials: Discovery means new class of materials and technologies September 18th, 2020

Physicists make electrical nanolasers even smaller September 18th, 2020

Shape matters for light-activated nanocatalysts - Study: Pointed tips on aluminum 'octopods' increase catalytic reactivity September 18th, 2020

Aberrant electronic and structural alterations in pressure tuned perovskite NaOsO3 September 18th, 2020

Materials/Metamaterials

Nano-microscope gives first direct observation of the magnetic properties of 2D materials: Discovery means new class of materials and technologies September 18th, 2020

Aberrant electronic and structural alterations in pressure tuned perovskite NaOsO3 September 18th, 2020

Get diamonds, take temperature: Quantum thermometer using nanodiamonds senses a 'fever' in tiny worms C. elegans September 11th, 2020

Quantitatively understanding of angle-resolved polarized Raman scattering from black phosphorus September 11th, 2020

Announcements

Nano-microscope gives first direct observation of the magnetic properties of 2D materials: Discovery means new class of materials and technologies September 18th, 2020

Physicists make electrical nanolasers even smaller September 18th, 2020

Shape matters for light-activated nanocatalysts - Study: Pointed tips on aluminum 'octopods' increase catalytic reactivity September 18th, 2020

Aberrant electronic and structural alterations in pressure tuned perovskite NaOsO3 September 18th, 2020

Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records

Nano-microscope gives first direct observation of the magnetic properties of 2D materials: Discovery means new class of materials and technologies September 18th, 2020

Shape matters for light-activated nanocatalysts - Study: Pointed tips on aluminum 'octopods' increase catalytic reactivity September 18th, 2020

Gentle probes could enable massive brain data collection: National Institutes of Health backing Rice’s Chong Xie to refine flexible nanoelectronics thread September 14th, 2020

Boundaries no barrier for thermoelectricity: Rice researchers find potentially useful electrical phenomenon in gold nanowires September 8th, 2020

Quantum nanoscience

Quirky response to magnetism presents quantum physics mystery: Magnetic topological insulators could be just right for making qubits, but this one doesn't obey the rules September 11th, 2020

Get diamonds, take temperature: Quantum thermometer using nanodiamonds senses a 'fever' in tiny worms C. elegans September 11th, 2020

Mathematical tool helps calculate properties of quantum materials more quickly August 14th, 2020

Sustainable chemistry at the quantum level: University of Pittsburgh's John Keith explores the sustainable potential of computational quantum chemistry August 6th, 2020

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project