Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Researchers demonstrate transport of mechanical energy, even through damaged pathways: Topological pump can provide stability for communication technologies

Diagram for temporal pump

CREDIT
Guarav Bahl
Diagram for temporal pump CREDIT Guarav Bahl

Abstract:
Most technologies today rely on devices that transport energy in the form of light, radio, or mechanical waves. However, these wave-guiding channels are susceptible to disorder and damage, either in manufacturing or after they are deployed in harsh environments.

Researchers demonstrate transport of mechanical energy, even through damaged pathways: Topological pump can provide stability for communication technologies

Urbana, IL | Posted on May 22nd, 2020

Researchers from the University of Illinois at Urbana-Champaign's Grainger College of Engineering have experimentally demonstrated a new way to transport energy even through wave-guides that are defective, and even if the disorder is a transient phenomenon in time. This work could lead to much more robust devices that continue to operate in spite of damage.

Gaurav Bahl, associate professor in mechanical science and engineering, and Taylor Hughes, physics professor, published their findings in Nature Communications. This important work was led by postdoctoral researcher Inbar Grinberg, also in mechanical science and engineering.

Their article, "Robust temporal pumping in a magneto-mechanical topological insulator," details the demonstration of a topological pump, a system that produces on-demand, robust transport of mechanical energy when it is periodically driven in time. The researchers built the topological pump using a one-dimensional magneto-mechanical artificial material, composed of springs, masses, and magnets.

The inspiration for the pump came from Nobel-prize winning physicist David Thouless' work from 1983, in which he proposed a scheme to achieve quantized transport of single particles, e.g. electrons, through a periodic potential, e.g. a chain of atoms. The underlying principle is to make gradual, periodic modulations to the structure of the chain as a function of time. At the completion of each period of the pumping cycle, a single particle must enter the chain on one end, and simultaneously a single particle must exit the other end of the chain. This reliably occurs even if the chain of atoms has some moderate amount of disorder.

This type of system is termed a pump because its technical description evokes a vision of an Archimedes Screw, a hand-cranked water pump with historical references dating back to ancient Egypt.

The Grainger researchers took Thouless' idea and implemented it into a mechanical topological pump. A notable distinction is that their pump transports mechanical energy, not particles or water, across the entire chain in one period of the pumping cycle. Moreover, the pump operates successfully even if the chain has significant amount of disorder in space or time. To complete the analogy to a water screw pump, the researchers powered their demonstration with a rotating crank shaft.

"Ultimately, we would like to extend this demonstration to produce similarly resilient wave-guides for light, sound, and electricity," explained Bahl. "The dream is to put a signal in on one end of a one-dimensional channel, and have guaranteed transport to the other end, in a robust fashion whenever the user wants it. We believe that topological pumps are a great way to do that."

Optical fiber and copper lines form the backbone of all our communication technologies. Presently, moderate damage along such communication channels - e.g. anything but complete disconnection - can reduce signal strength and even produce undesirable reflections, which adversely affect the amount of data that these channels can carry.

The research team believes that topological pumping could be a great solution in these scenarios.

####

For more information, please click here

Contacts:
Guarav Bahl


@EngineeringAtIL

Copyright © University of Illinois Grainger College of Engineering

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Mao Lin, Wladimir A. Benalcazar, Christopher W. Peterson, and Cameron Harris were also collaborators on the article, which can be found in Nature Communications at:

Related News Press

News and information

Researchers develop artificial building blocks of life March 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Two-dimensional bimetallic selenium-containing metal-organic frameworks and their calcinated derivatives as electrocatalysts for overall water splitting March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

Wireless/telecommunications/RF/Antennas/Microwaves

HKUST researchers develop new integration technique for efficient coupling of III-V and silicon February 16th, 2024

Optical-fiber based single-photon light source at room temperature for next-generation quantum processing: Ytterbium-doped optical fibers are expected to pave the way for cost-effective quantum technologies November 3rd, 2023

Chip-based dispersion compensation for faster fibre internet: SUTD scientists developed a novel CMOS-compatible, slow-light-based transmission grating device for the dispersion compensation of high-speed data, significantly lowering data transmission errors and paving the way for June 30th, 2023

Researchers demonstrate co-propagation of quantum and classical signals: Study shows that quantum encryption can be implemented in existing fiber networks January 20th, 2023

Possible Futures

Two-dimensional bimetallic selenium-containing metal-organic frameworks and their calcinated derivatives as electrocatalysts for overall water splitting March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Discoveries

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

High-tech 'paint' could spare patients repeated surgeries March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Materials/Metamaterials/Magnetoresistance

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Focused ion beam technology: A single tool for a wide range of applications January 12th, 2024

Catalytic combo converts CO2 to solid carbon nanofibers: Tandem electrocatalytic-thermocatalytic conversion could help offset emissions of potent greenhouse gas by locking carbon away in a useful material January 12th, 2024

Announcements

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Researchers develop artificial building blocks of life March 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project