Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Sustainable structural material for plastic substitute

The cellulose nanofiber-derived bulk CNFP structural material and its characterization. (a) Photograph of large-sized CNFP with a volume of 320 × 220 × 27 mm3. (b) The robust 3D nanofiber network of CNFP. Numerous CNFs are intertwined with each other and combined together by hydrogen bonds. (c) Parts with different shapes of CNFP produced by a milling machine. (d) Ashby diagram of thermal expansion versus specific strength for CNFP compared with typical polymers, metals, and ceramics. (e) Ashby diagram of thermal expansion versus specific impact toughness for CNFP compared with typical polymers, metals, and ceramics. Copyright 2020, American Association for the Advancement of Science.

CREDIT
Shu-Hong Yu
The cellulose nanofiber-derived bulk CNFP structural material and its characterization. (a) Photograph of large-sized CNFP with a volume of 320 × 220 × 27 mm3. (b) The robust 3D nanofiber network of CNFP. Numerous CNFs are intertwined with each other and combined together by hydrogen bonds. (c) Parts with different shapes of CNFP produced by a milling machine. (d) Ashby diagram of thermal expansion versus specific strength for CNFP compared with typical polymers, metals, and ceramics. (e) Ashby diagram of thermal expansion versus specific impact toughness for CNFP compared with typical polymers, metals, and ceramics. Copyright 2020, American Association for the Advancement of Science. CREDIT Shu-Hong Yu

Abstract:
Plastic is a kind of widely used artificial material. The invention of plastic gives us a lightweight, strong and inexpensive material to use but also bring us the plastic apocalypse. Many of the unrecycled plastic waste ends up in the ocean, Earth's last sink. Broken by waves, sunlight and marine animal, a single plastic bag can be broken down into 1.75 million microscopic fragments, which is called microplastics. Those microplastics might finally end up in our blood and system through the fish we eat or the water we drink.

Sustainable structural material for plastic substitute

Hefei, P.R.China | Posted on May 11th, 2020

During the long-term evolution of most plants on the earth, cellulose-based materials have been developed as their own structural support materials. Cellulose in plants mainly exists in the form of cellulose nanofibers (CNF), which have excellent mechanical and thermal properties. CNF, which can be derived from plant or produced by bacteria, is one of the most abundant all-green resources on Earth. CNF is an ideal nanoscale building block for constructing macroscopic high-performance materials, as it has higher strength (2 GPa) and modulus (138 GPa) than Kevlar and steel and lower thermal expansion coefficient (0.1 ppm K-1) than silica glass. Based on this bio-based and biodegradable building block, the construction of sustainable and high-performance structural materials will greatly promote the replacement of plastic and help us avoid the plastic apocalypse.

Nowadays, a team lead by Prof. Shu-Hong Yu from the University of Science and Technology of China (USTC) report a high-performance sustainable structural material called cellulose nanofiber plate (CNFP) (Fig. 1a and c) which is constructed from bio-based CNF (Fig. 1b) and ready to replace the plastic in many fields. This CNFP has high specific strength (~198 MPa/(Mg m-3)), which is 4 times higher than that of steel and higher than that of traditional plastic and aluminum alloy. In addition, CNFP has higher specific impact toughness (~67 kJ m-2/(Mg m-3)) than aluminum alloy and only half of its density (1.35 g cm-3).

Unlike plastic or other polymer based material, CNFP exhibit excellent resistance to extreme temperature and thermal shock. The thermal expansion coefficient of CNFP is lower than 5 ppm K-1 from -120 °C to 150 °C, which is close to ceramic materials, much lower than typical polymers and metals. Moreover, after 10 times of rapid thermal shock between 120 °C bake oven and -196 °C liquid nitrogen, CNFP remain its strength. Those result shows its outstanding thermal dimensional stability, which allow CNFP to own great potentials used as structural material under extreme temperature and alternate cooling and heating. Owing to its wide range of raw materials and bio-assisted synthesis process, CNFP is a kind of low-cost material with the cost of only 0.5 $/kg, which is lower than most of plastic. With low density, outstanding strength and toughness, and great thermal dimensional stability, all of those properties of CNFP surpass those of traditional metals, ceramics and polymers (Fig. 1d and e), making it a high-performance and environmental-friendly alternative for engineering requirement, especially for aerospace application.

CNFP not only has the power to replace plastic and saves us from drowning in them, but also has great potential as the next generation of sustainable and lightweight structural material.

####

For more information, please click here

Contacts:
Jane FAN Qiong

86-551-636-07280

Copyright © University of Science and Technology of China (USTC)

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Possible Futures

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

With VECSELs towards the quantum internet Fraunhofer: IAF achieves record output power with VECSEL for quantum frequency converters April 5th, 2024

Discoveries

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Materials/Metamaterials/Magnetoresistance

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Focused ion beam technology: A single tool for a wide range of applications January 12th, 2024

Catalytic combo converts CO2 to solid carbon nanofibers: Tandem electrocatalytic-thermocatalytic conversion could help offset emissions of potent greenhouse gas by locking carbon away in a useful material January 12th, 2024

Announcements

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Aerospace/Space

Under pressure - space exploration in our time: Advancing space exploration through diverse collaborations and ethical policies February 16th, 2024

Bridging light and electrons January 12th, 2024

New tools will help study quantum chemistry aboard the International Space Station: Rochester Professor Nicholas Bigelow helped develop experiments conducted at NASA’s Cold Atom Lab to probe the fundamental nature of the world around us November 17th, 2023

Manufacturing advances bring material back in vogue January 20th, 2023

Construction

Temperature-sensing building material changes color to save energy January 27th, 2023

Strain-sensing smart skin ready to deploy: Nanotube-embedded coating detects threats from wear and tear in large structures July 15th, 2022

A sunlight-driven “self-healing” anti-corrosion coating May 27th, 2022

Polymer fibers with graphene nanotubes make it possible to heat hard-to-reach, complex-shaped items February 11th, 2022

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project