Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International

Wikipedia Affiliate Button

Home > Press > Molecules with a spin on a topological insulator: a hybrid approach to magnetic topological states of matter

Abstract:
Controlling the interactions at the interface of a magnetic/topological insulator heterostructure is an outstanding challenge with implications in fundamental science and technology. A research led by the ICN2 Atomic Manipulation and Spectroscopy Group and the Physics and Engineering of Nanodevices Group, in collaboration with the Supramolecular Nanochemistry and Materials Group, the CFM-San Sebastián, ETH Zurich, ISM-Trieste and ALBA Synchrotron, has shown that ligands from metal-organic molecules can be used to tailor the properties of these interfaces. The results are presented in ACS Nano.

Molecules with a spin on a topological insulator: a hybrid approach to magnetic topological states of matter

Barcelona, Spain | Posted on May 1st, 2020

A topological insulator (TI) is a material that behaves as an insulator in its interior but whose surface contains exotic conducting states, therefore allowing electrons to move only in the surface of the material. The most peculiar property of these surface electrons is that their spin is locked to the direction of motion, so that it can be manipulated by electrical currents.

Interfacing TIs with a magnetic material can give rise to phenomena such as the current-induced spin to charge interconversion and the emergence of dissipationless spin currents, which can be exploited in novel spintronic devices, metrology or in electron-spin based quantum information applications. However, this union of TI and magnetic material into a so-called heterostructure is a complex process that often prevents the control of the special phenomena described before. In particular, when the TI is interfaced directly with metallic ferromagnets, the strong interaction between the two materials leads to undesired effects such as the loss of magnetic properties or the suppression of the topological surface states.

By contrast, metal-organic molecules, organic molecules hosting a (magnetic) metallic ion, have been envisioned as candidates to develop magnetic/TI heterostructures in which interfacial interactions are tailored by the organic ligand. This is precisely what researchers from the ICN2, in collaboration with CFM-San Sebastián, ETH Zurich, ISM-Trieste and ALBA Synchrotron, have demonstrated. Published in ACS Nano, this research has been led by ICREA Prof. Aitor Mugarza, Leader of the Atomic Manipulation and Spectrocopy Group and ICREA Prof. Sergio O. Valenzuela, Leader of the Physics and Engineering of Nanodevices Group. They have had the collaboration of ICREA Prof. Daniel Maspoch, Leader of the Supramolecular Nanochemistry and Materials Group, which has synthesised the metal-organic molecule. The first author of the work is former ICN2’s PhD student Marc G. Cuxart.

In this work, the researchers have shown for the first time that it is possible to tune the interfacial interaction without quenching the molecular spin and the topological surface state of the TI by choosing suitable organic ligands. In particular, they found that CoTBrPP and CoPc monolayers (metal-organic molecules) adsorbed on Bi2Te3 (topological insulator) form robust interfaces where electronic interactions can be tuned without strongly perturbing the intrinsic properties of each constituent. Their conclusions are supported by structural, electronic and magnetic information derived from a combination of specialised techniques (STM, ARPES, XMCD and DFT).

####

For more information, please click here

Contacts:
Francisco J. Paños

Copyright © ICN2

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Article reference:

Related News Press

News and information

When Dirac meets frustrated magnetism August 3rd, 2020

New printing process advances 3D capabilities: Technology aims to improve quality of products used in business, industry and at home July 31st, 2020

TU Graz researchers synthesize nanoparticles tailored for special applications July 31st, 2020

Scientists discover new class of semiconducting entropy-stabilized materials July 31st, 2020

Magnetism

When Dirac meets frustrated magnetism August 3rd, 2020

Manipulating non-magnetic atoms in a chromium halide enables tuning of magnetic properties: New approach creates synthetic layered magnets with unprecedented level of control over their magnetic properties July 24th, 2020

Imaging

Bruker Launches Revolutionary High-Speed AFM System for Single-Molecule Applications: JPK NanoRacer® Follows Molecular Dynamics in Real Time at 50 Frames per Second July 30th, 2020

Study: Mapping crystal shapes could fast-track 2D materials: Experts call for global effort to clear hurdles to mass production July 27th, 2020

HORIBA Medical and CEA-Leti Strengthen Their Partnership to Develop Tomorrow’s Diagnostics at the Point of Care July 21st, 2020

Possible Futures

Physicists find misaligned carbon sheets yield unparalleled properties July 31st, 2020

Way, shape and form: Synthesis conditions define the nanostructure of manganese dioxide July 31st, 2020

New printing process advances 3D capabilities: Technology aims to improve quality of products used in business, industry and at home July 31st, 2020

Scientists discover new class of semiconducting entropy-stabilized materials July 31st, 2020

Spintronics

Spintronics: Faster data processing through ultrashort electric pulses July 3rd, 2020

A path to new nanofluidic devices applying spintronics technology: Substantial increase in the energy conversion efficiency of hydrodynamic power generation via spin currents July 3rd, 2020

Extensive review of spin-gapless semiconductors: Next-generation spintronics candidates: spin-gapless semiconductors (SGSs) bridge the zero-gap materials and half-metals June 26th, 2020

Excitons form superfluid in certain 2D combos: Rice University researchers find ‘paradox’ in ground-state bilayers June 15th, 2020

Chip Technology

When Dirac meets frustrated magnetism August 3rd, 2020

TU Graz researchers synthesize nanoparticles tailored for special applications July 31st, 2020

Scientists discover new class of semiconducting entropy-stabilized materials July 31st, 2020

Porous graphene ribbons doped with nitrogen for electronics and quantum computing July 10th, 2020

Discoveries

When Dirac meets frustrated magnetism August 3rd, 2020

Way, shape and form: Synthesis conditions define the nanostructure of manganese dioxide July 31st, 2020

New printing process advances 3D capabilities: Technology aims to improve quality of products used in business, industry and at home July 31st, 2020

TU Graz researchers synthesize nanoparticles tailored for special applications July 31st, 2020

Announcements

When Dirac meets frustrated magnetism August 3rd, 2020

New printing process advances 3D capabilities: Technology aims to improve quality of products used in business, industry and at home July 31st, 2020

TU Graz researchers synthesize nanoparticles tailored for special applications July 31st, 2020

Scientists discover new class of semiconducting entropy-stabilized materials July 31st, 2020

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

When Dirac meets frustrated magnetism August 3rd, 2020

Way, shape and form: Synthesis conditions define the nanostructure of manganese dioxide July 31st, 2020

New printing process advances 3D capabilities: Technology aims to improve quality of products used in business, industry and at home July 31st, 2020

TU Graz researchers synthesize nanoparticles tailored for special applications July 31st, 2020

Tools

Bruker Launches Revolutionary High-Speed AFM System for Single-Molecule Applications: JPK NanoRacer® Follows Molecular Dynamics in Real Time at 50 Frames per Second July 30th, 2020

Izon Science receives $10.5M investment from Bolton Equities: Christchurch-headquartered nanotech company secures investment to accelerate global growth; appoints top board chairman and directors July 28th, 2020

Study: Mapping crystal shapes could fast-track 2D materials: Experts call for global effort to clear hurdles to mass production July 27th, 2020

Project creates more powerful, versatile ultrafast laser pulse: Institute of Optics research sets record for shortest laser pulse for newly developed technology, work that has important applications in engineering and biomedicine July 24th, 2020

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project