Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International

Wikipedia Affiliate Button

Home > Press > FSU researchers discover new structure for promising class of materials

Biwu Ma, professor of chemistry and biochemistry, published a new study on how a novel structure could create blue light in a type of material called a perovskite.
Biwu Ma, professor of chemistry and biochemistry, published a new study on how a novel structure could create blue light in a type of material called a perovskite.

Abstract:
Florida State University researchers have discovered a novel structure for organic-inorganic hybrid materials that shows potential for more efficient technologies.

FSU researchers discover new structure for promising class of materials

Tallahassee, FL | Posted on April 24th, 2020

Professor of Chemistry and Biochemistry Biwu Ma and his team have published a new study in the journal Science Advances that explains how they created a hollow nanostructure for metal halide perovskites that would allow the material to emit a highly efficient blue light. Metal halide perovskites are a material that have shown great potential for photon-related technologies such as light-emitting diodes and lasers, but scientists have still been working to make them more efficient and effective.

"The fabrication of new generation color displays and solid-state lighting requires luminescent materials and devices of the three primary colors, red, green and blue," Ma said. "Although multiple ways of color tuning have been demonstrated for perovskites to achieve highly efficient green and red emissions, producing efficient and stable blue emissions is not trivial. This work provides a facile technique to prepare highly efficient blue emitting thin films."

Ma's research group at FSU has been working on the development and study of metal halide perovskites and perovskite-related materials for optoelectronics and energy applications since 2014. His team has pioneered scientific research on the structural and compositional control of metal halide perovskites and hybrids that would allow them to exhibit unique and useful properties.

In this case, researchers worked with a metal halide perovskite made of cesium lead bromide nanocrystals to build the structure. Previous nanostructures made from this material, including nanoplatelets, nanowires and quantum dots, had positive curvatures; this is the first negative curvature hollow structure of a metal halide perovskite that exhibits pronounced quantum size effects.

"We believe that our work would stimulate exploration of other nanostructures with remarkable and unique properties," Ma said.

###

The first author of this work is Michael Worku, a fourth-year doctoral student from the FSU Materials Science and Engineering program. Other authors include former graduate students Yu Tian and Chenkun Zhou; current chemistry graduate students Maya Chaaban, Drake Beery and Yan Zhou; postdoctoral fellows Liang-jin Xu, Qingquan He, and Haoran Lin; National High-Magnetic Field Laboratory scientists Yi-Feng Su and Yan Xin; and X-Ray Facility Manager Xinsong Lin.

This work was funded by the National Science Foundation, the Air Force Office of Scientific Research (AFOSR) and the FSU Office of Research.

####

For more information, please click here

Contacts:
Kathleen Haughney

850-644-1489

@floridastate

Copyright © Florida State University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

RELATED JOURNAL ARTICLE:

Related News Press

News and information

The lightest shielding material in the world: Protection against electromagnetic interference July 3rd, 2020

Spintronics: Faster data processing through ultrashort electric pulses July 3rd, 2020

A path to new nanofluidic devices applying spintronics technology: Substantial increase in the energy conversion efficiency of hydrodynamic power generation via spin currents July 3rd, 2020

Towards lasers powerful enough to investigate a new kind of physics: An international team of researchers has demonstrated an innovative technique for increasing the intensity of lasers July 3rd, 2020

Crystal structure discovered almost 200 years ago could hold key to solar cell revolution July 3rd, 2020

Perovskites

Crystal structure discovered almost 200 years ago could hold key to solar cell revolution July 3rd, 2020

Printed perovskite LEDs: An innovative technique towards a new standard process of electronics manufacturing June 12th, 2020

Getting through the bottleneck—A new class of layered perovskite with high oxygen-ion conductivity April 29th, 2020

Govt.-Legislation/Regulation/Funding/Policy

Towards lasers powerful enough to investigate a new kind of physics: An international team of researchers has demonstrated an innovative technique for increasing the intensity of lasers July 3rd, 2020

Carbon-loving materials designed to reduce industrial emissions July 3rd, 2020

Charcoal a weapon to fight superoxide-induced disease, injury: Nanomaterials soak up radicals, could aid treatment of COVID-19 July 2nd, 2020

The nature of nuclear forces imprinted in photons June 30th, 2020

Possible Futures

Spintronics: Faster data processing through ultrashort electric pulses July 3rd, 2020

A path to new nanofluidic devices applying spintronics technology: Substantial increase in the energy conversion efficiency of hydrodynamic power generation via spin currents July 3rd, 2020

Towards lasers powerful enough to investigate a new kind of physics: An international team of researchers has demonstrated an innovative technique for increasing the intensity of lasers July 3rd, 2020

Crystal structure discovered almost 200 years ago could hold key to solar cell revolution July 3rd, 2020

Discoveries

The lightest shielding material in the world: Protection against electromagnetic interference July 3rd, 2020

Spintronics: Faster data processing through ultrashort electric pulses July 3rd, 2020

A path to new nanofluidic devices applying spintronics technology: Substantial increase in the energy conversion efficiency of hydrodynamic power generation via spin currents July 3rd, 2020

Towards lasers powerful enough to investigate a new kind of physics: An international team of researchers has demonstrated an innovative technique for increasing the intensity of lasers July 3rd, 2020

Announcements

Towards lasers powerful enough to investigate a new kind of physics: An international team of researchers has demonstrated an innovative technique for increasing the intensity of lasers July 3rd, 2020

Crystal structure discovered almost 200 years ago could hold key to solar cell revolution July 3rd, 2020

Flexible material shows potential for use in fabrics to heat, cool July 3rd, 2020

Carbon-loving materials designed to reduce industrial emissions July 3rd, 2020

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

A path to new nanofluidic devices applying spintronics technology: Substantial increase in the energy conversion efficiency of hydrodynamic power generation via spin currents July 3rd, 2020

Towards lasers powerful enough to investigate a new kind of physics: An international team of researchers has demonstrated an innovative technique for increasing the intensity of lasers July 3rd, 2020

Crystal structure discovered almost 200 years ago could hold key to solar cell revolution July 3rd, 2020

Flexible material shows potential for use in fabrics to heat, cool July 3rd, 2020

Military

A Tremendous Recognition’ Engineer Jonathan Klamkin earns prestigious award from DARPA June 23rd, 2020

Fluorocarbon bonds are no match for light-powered nanocatalyst: Rice U. lab unveils catalyst that can break problematic C-F bonds June 22nd, 2020

Teaching physics to neural networks removes 'chaos blindness' June 19th, 2020

Is teleportation possible? Yes, in the quantum world: Quantum teleportation is an important step in improving quantum computing June 19th, 2020

Energy

Process for 'two-faced' nanomaterials may aid energy, information tech June 26th, 2020

Measuring a tiny quasiparticle is a major step forward for semiconductor technology: Research team publishes latest findings on promising quasiparticles and their interactions June 19th, 2020

Transparent graphene electrodes might lead to new generation of solar cells: New roll-to-roll production method could enable lightweight, flexible solar devices and a new generation of display screens June 8th, 2020

First measurement of electron energy distributions, could enable sustainable energy technologies June 5th, 2020

Quantum Dots/Rods

Charcoal a weapon to fight superoxide-induced disease, injury: Nanomaterials soak up radicals, could aid treatment of COVID-19 July 2nd, 2020

UTEP researchers help bring biofriendly materials to drug design for neuro disorders June 5th, 2020

Oxford Instruments Asylum Research Releases a New Application Note Introducing Scanning Capacitance Microscopy (SCM) June 3rd, 2020

Development of new photovoltaic commercialization technology: The cause for efficiency degradation in an actual operating environment has been identified, with proposal of material processing method for improving performance stability April 10th, 2020

Quantum nanoscience

Macroscopic quantum interference in an ultra-pure metal June 26th, 2020

Process for 'two-faced' nanomaterials may aid energy, information tech June 26th, 2020

An EPiQS Pursuit: Physicist Andrea Young is chosen to receive an Experimental Investigator award from the Moore Foundation May 28th, 2020

Scientists break the link between a quantum material's spin and orbital states: The advance opens a path toward a new generation of logic and memory devices based on orbitronics that could be 10,000 times faster than today's May 15th, 2020

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project