Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Multi-functionalization of graphene for molecular targeted cancer therapy

Figure 1. Schematic illustration of multi-functional graphene.

CREDIT
JAIST, CNRS
Figure 1. Schematic illustration of multi-functional graphene. CREDIT JAIST, CNRS

Abstract:
"Three" kinds of regalia such as crown, orb, and sward are often necessary to be a high king for conquering the world. For fighting off cancerous diseases, what do we need? This "triple" chemical modified nanomaterial might be save the patient.

Multi-functionalization of graphene for molecular targeted cancer therapy

Ishikawa, Japan | Posted on April 24th, 2020

Cancer is a leading cause of death worldwide. Under this situation, a successful tumor selective drug targeting and minimized toxicity of cancer drug are urgently necessary.

Scientists from Japan Advanced Institute of Science and Technology (JAIST) and Centre national de la recherche scientifique (CNRS), and their colleagues have developed a type of nanomedicine based on multi-functional graphene that allows for targeted cancer treatment at molecular level.

Single molecular sheet graphene is a promising carbon nanomaterial for various fundamental and practical applications in the next decade because of its excellent physico-chemical features. Graphene has been also known to have a good biocompatibility and biodegradability, thus leading to explore this nanocarbon as drug delivery carrier. However, it is not easy to modify a lot of individual functional molecules onto a graphene nano-sheet at the same time for its biomedical applications.

Developed by Prof. Eijiro Miyako from JAIST (Nomi, Japan), Dr. Alberto Bianco from CNRS (Strasbourg, France), and their international teams, the multi-functional graphene as a drug delivery carrier are successfully synthesized with "three" type of molecules such as near-infrared (NIR) fluorescent probe (indocyanine green; ICG), tumor targeting molecule (Folic acid: FA), and anticancer drug (doxorubicin; Dox) by a covalent chemical modification technique (Figure 1). ICG (green color part in the picture) was chosen as fluorophore to follow the uptake and to track the material inside the cells. FA (blue) was covalently bound through a polyethylene glycol (pink) linked to graphene, to specifically target the cancer cells, and Dox (red) was used as anticancer drug.

Aside from testing the therapeutic abilities to eliminate cancer cells in a culture dish, the team found that the unique properties of this multi-functional graphene showed an enhanced anticancer activity with excellent cancer targeting effect. This would open the doors to future biomedical applications of this type of material. The team plans to continue exploring multi-functional graphene towards the cancer therapy using murine animal model.

###

The work was supported by the Japan Society for the Promotion of Science KAKENHI Grant-in-Aid for Scientific Research (A) and (B), the KAKENHI Fund for the Promotion of Joint International Research, the Agence Nationale de la Recherche (ANR), the Graphene Flagship, the Spanish MINECO, the Generalitat Valenciana.

####

For more information, please click here

Contacts:
Eijiro Miyako

81-761-511-540

Copyright © Japan Advanced Institute of Science and Technology (JAIST)

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Paper titled "Rational chemical multifunctionalization of graphene interface enhances targeting cancer therapy", published in Angewandte Chemie International Edition, DOI: 10.1002/anie.201916112:

Related News Press

News and information

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Good as gold - improving infectious disease testing with gold nanoparticles April 5th, 2024

Cancer

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Graphene/ Graphite

First human trial shows ‘wonder’ material can be developed safely: A revolutionary nanomaterial with huge potential to tackle multiple global challenges could be developed further without acute risk to human health, research suggests February 16th, 2024

NRL discovers two-dimensional waveguides February 16th, 2024

$900,000 awarded to optimize graphene energy harvesting devices: The WoodNext Foundation's commitment to U of A physicist Paul Thibado will be used to develop sensor systems compatible with six different power sources January 12th, 2024

First direct imaging of small noble gas clusters at room temperature: Novel opportunities in quantum technology and condensed matter physics opened by noble gas atoms confined between graphene layers January 12th, 2024

Govt.-Legislation/Regulation/Funding/Policy

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Possible Futures

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

With VECSELs towards the quantum internet Fraunhofer: IAF achieves record output power with VECSEL for quantum frequency converters April 5th, 2024

Nanomedicine

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Good as gold - improving infectious disease testing with gold nanoparticles April 5th, 2024

Researchers develop artificial building blocks of life March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

Discoveries

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Announcements

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

Discovery of new Li ion conductor unlocks new direction for sustainable batteries: University of Liverpool researchers have discovered a new solid material that rapidly conducts lithium ions February 16th, 2024

Catalytic combo converts CO2 to solid carbon nanofibers: Tandem electrocatalytic-thermocatalytic conversion could help offset emissions of potent greenhouse gas by locking carbon away in a useful material January 12th, 2024

Research partnerships

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

'Sudden death' of quantum fluctuations defies current theories of superconductivity: Study challenges the conventional wisdom of superconducting quantum transitions January 12th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project