Home > Press > Hair surface engineering to be advanced by nano vehicles: This new researched technology can help both drug delivery and hair cosmetics industry
![]() |
Abstract:
"Hair surface engineering: modification of fibrous materials of biological origin using functional ceramic nano containers", a project headed by Rawil Fakhrullin, is supported by the Russian Science Foundation.
Dr. Fakhrullin explains, "We will modify the surface of hair and other fibrous materials of natural origin by the directed formation of nano-structured layers based on functional inorganic ceramic nano containers carrying a variety of organic components. Materials of natural origin are hypoallergenic, comfortable to use, but they have rather low wear resistance, and they are prone to deformation and biodegradation. Directed modification of properties using functionalized nano materials will significantly expand the field of application of natural fibers."
Based on the close similarity of the microstructure of fibrous materials of natural origin and mammalian hair, the scientists are going to create a universal technology for modifying the surface of fibers of biological origin for use in the textile and cosmetic industries.
«By modifying the fibrous structures of natural origin, it will be possible to change their aesthetic properties (color, texture and smell), protect them from biodegradation by applying antibacterial, fungicidal and insecticidal preparations, as well as increase the fire resistance of fabrics and non-woven materials based on wool, cotton, linen and silk,» elaborates Fakhrullin.
KFU bionanotechnologists will develop methods for modifying human hair. With their help, it will be possible not only to change the color of the hair, thickness, texture and aroma, but also to protect the structure of the hair and skin under them from ultraviolet radiation.
In addition, using these methods, the project head is convinced, it will be possible to create tools for applying topical anti-inflammatory drugs based on functional nano containers. When applied to human hair in affected areas of the skin, they will provide a prolonged gradual release of drugs. Veterinary preparations with a similar principle of action can be applied to the fur of farm and domestic animals for medicinal purposes.
In the process, scientists will also study the fundamental processes of self-assembly of inorganic nanoparticles on the surface of biological fibers and determine the optimal parameters for the directed modification of the properties of fibrous materials.
"Inorganic nano particles of various origin, biopolymers and their complexes will be used to study the patterns of self-assembly of nanoparticles on the surface of fibers," Fakhrullin concludes.
####
For more information, please click here
Contacts:
Yury Nurmeev
@KazanUni
Copyright © Kazan Federal University
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related Links |
Related News Press |
News and information
Arrowhead Pharmaceuticals to Webcast Fiscal 2021 First Quarter Results January 20th, 2021
Scientists synthetize new material for high-performance supercapacitors January 19th, 2021
Possible Futures
Arrowhead Pharmaceuticals to Webcast Fiscal 2021 First Quarter Results January 20th, 2021
Scientists synthetize new material for high-performance supercapacitors January 19th, 2021
Self Assembly
Atomic-scale nanowires can now be produced at scale: Scalable synthesis of transition metal chalcogenide nanowires for next-gen electronics December 25th, 2020
Tandon Researchers develop method to create colloidal diamonds: The long-awaited photonic technique could change the way optical technologies are developed and used over the next decade September 24th, 2020
Tandon Researchers develop method to create colloidal diamonds: The long-awaited photonic technique could change the way optical technologies are developed and used over the next decade September 24th, 2020
Nanomedicine
Arrowhead Pharmaceuticals to Webcast Fiscal 2021 First Quarter Results January 20th, 2021
Chemists invent shape-shifting nanomaterial with biomedical potential It converts from sheets to tubes and back in a controllable fashion January 13th, 2021
Nanocrystals that eradicate bacteria biofilm January 8th, 2021
Detecting COVID-19 antibodies in 10-12 seconds January 8th, 2021
Discoveries
Scientists synthetize new material for high-performance supercapacitors January 19th, 2021
Scientists' discovery is paving the way for novel ultrafast quantum computers January 15th, 2021
Physicists propose a new theory to explain one dimensional quantum liquids formation January 15th, 2021
Announcements
Arrowhead Pharmaceuticals to Webcast Fiscal 2021 First Quarter Results January 20th, 2021
Scientists synthetize new material for high-performance supercapacitors January 19th, 2021
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
Scientists synthetize new material for high-performance supercapacitors January 19th, 2021
Food/Agriculture/Supplements
Controlling the nanoscale structure of membranes is key for clean water, researchers find January 1st, 2021
Graphene nanotubes help to prevent losses at grain elevators June 2nd, 2020
Tiny particle, big payoff: Innovative virus research may save wheat and other crops May 15th, 2020
Fueling the World Sustainably: Synthesizing Ammonia using Less Energy April 26th, 2020
Nanobiotechnology
Arrowhead Pharmaceuticals to Webcast Fiscal 2021 First Quarter Results January 20th, 2021
Chemists invent shape-shifting nanomaterial with biomedical potential It converts from sheets to tubes and back in a controllable fashion January 13th, 2021
Nanocrystals that eradicate bacteria biofilm January 8th, 2021
Detecting COVID-19 antibodies in 10-12 seconds January 8th, 2021
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |