Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > O-FIB: Far-field-induced near-field breakdown for direct nanowriting in an atmospheric environment

a, Schematic plot of the evanescent wave (Eew) around two nanoholes with different sizes on a dielectric. For the larger nanohole with a diameter comparable to the wavelength, the evanescent fields at each edge of the nanohole are independent and decay rapidly from the boundary. For the smaller nanohole with a deep-subwavelength aperture, the strong interaction between the two boundaries constructively enhances the optical intensity inside the nanohole and confines the light on a deep-subwavelength scale. b, Simulations of the E-field strength distribution for a titanium oxide film with a nanohole shown by the central white-out region (the intensity of the light inside the nanohole is close to maximum but is not shown for a better visualization). c, Schematic of the direct nanowriting of O-FIB (left) and the image of the free-form patterning obtained by birefringence microscope (right, upper) and scanning electron microscope (right, lower).

CREDIT
by Zhen-Ze Li, Lei Wang, Hua Fan, Yan-Hao Yu, Qi-Dai Chen, Saulius Juodkazis and Hong-Bo Sun
a, Schematic plot of the evanescent wave (Eew) around two nanoholes with different sizes on a dielectric. For the larger nanohole with a diameter comparable to the wavelength, the evanescent fields at each edge of the nanohole are independent and decay rapidly from the boundary. For the smaller nanohole with a deep-subwavelength aperture, the strong interaction between the two boundaries constructively enhances the optical intensity inside the nanohole and confines the light on a deep-subwavelength scale. b, Simulations of the E-field strength distribution for a titanium oxide film with a nanohole shown by the central white-out region (the intensity of the light inside the nanohole is close to maximum but is not shown for a better visualization). c, Schematic of the direct nanowriting of O-FIB (left) and the image of the free-form patterning obtained by birefringence microscope (right, upper) and scanning electron microscope (right, lower). CREDIT by Zhen-Ze Li, Lei Wang, Hua Fan, Yan-Hao Yu, Qi-Dai Chen, Saulius Juodkazis and Hong-Bo Sun

Abstract:
Lasers are becoming one of the dominant tools in the current manufacturing industry. Much effort has been devoted to improving the processing accuracy, and spatial resolutions as low as micrometers have been achieved in laser cutting, wedding, marking and stereolithography in an atmospheric environment. The femtosecond laser (fs-laser) is a particularly promising approach from this point of view, in addition to its three-dimensional (3D) processing capability and broad-spectrum material usability. Super-diffraction-limited feature sizes at a level of tens of nanometers based on multiphoton absorption thresholding, shrinkage and stimulation emission depletion effects have also been realized in fs-laser induced photocuring of polymers, which unfortunately are not applicable to solid materials. Optical near-field techniques provide an alternative super-resolution scheme by localizing light fields to nanometer scales with the physical shapes of sharp tips, tiny apertures, nanoparticles and small protrusions. Nevertheless, these approaches often rely on heavy movement and alignment systems to maintain precise probe-substrate spacing for practical fabrication/patterning throughput due to the evanescent nature of the near field. An innovative optical patterning technology that permits vacuum-free high-resolution processing comparable to conventional FIB processing is highly desired.In a new paper published in Light Science & Application, scientists from the State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing, China, the State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, China, and the Nanotechnology facility, Swinburne University of Technology, John st., Hawthorn, Australia reported an optical far-field-induced near-field breakdown (O-FIB) approach, allowing the nanofabrication applicable to almost any solid materials in atmosphere. The writing is initiated from nano-holes created by femtosecond laser induced multiphoton absorption and its cutting "knife edge" is sharpened by far-field regulated enhancement of the optical near field. A spatial resolution of sub-20 nm (λ/40 for light wavelength λ) is readily achieved. O-FIB is empowered by a simple polarization control of the incident light for steering nano-groove writing along the designed pattern.

O-FIB: Far-field-induced near-field breakdown for direct nanowriting in an atmospheric environment

Changchun, China | Posted on March 20th, 2020

"According to the continuous boundary condition of the normal component of electric displacement, we experimentally observed the light field nano-localization and polarization-vertical enhancement around the nanohole, which permits direct control of the near-field enhancement for nanoablation by far field. Based on this idea, we have realized free nano-writing with resolution as high as 18 nm by manipulating laser polarization and beam's trajectory in real time."

"Since for the self-regulation effect induced by the feedback between light and the initial seeds, our approach has the inherent robustness against the stochastic nature of initial ablation and the ability to manipulate line width. Besides, our approach demonstrates free-form stitchless writing of nano-grooves with controllable length, separation and trajectory. Meanwhile, the universality of seeding effect enables a large-area printing mode which is superior to the conventional FIB."

"Our presented technique has opened a new era of high-efficient nanomachining. It is applicable for various materials and surface in the fields of nanoelectronics, nanofluids, and nanomedicines. The possibility we show here to direct manipulating the near field through the far field, may inspire the researchers to push the femtosecond laser nanofabrication or even other domains of the optical processing to a higher level." The scientists forecast.

####

For more information, please click here

Contacts:
Hong-Bo Sun

Copyright © Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Nanofabrication

New tech builds ultralow-loss integrated photonic circuits April 16th, 2021

Kirigami-style fabrication may enable new 3D nanostructures April 2nd, 2021

Building tough 3D nanomaterials with DNA: Columbia Engineers use DNA nanotechnology to create highly resilient synthetic nanoparticle-based materials that can be processed through conventional nanofabrication methods March 19th, 2021

Bringing Atoms to a Standstill: NIST Miniaturizes Laser Cooling January January 21st, 2021

Microfluidics/Nanofluidics

Confined magnetic colloidal system for controllable fluid transport March 16th, 2021

Stretching diamond for next-generation microelectronics January 5th, 2021

Bionic idea boosts lithium-ion extraction January 1st, 2021

Govt.-Legislation/Regulation/Funding/Policy

Better metric for thermoelectric materials means better design strategies: New quantity helps experimentally classify dimensionality of thermoelectric materials April 15th, 2021

Better metric for thermoelectric materials means better design strategies: New quantity helps experimentally classify dimensionality of thermoelectric materials April 15th, 2021

Better solutions for making hydrogen may lie just at the surface April 9th, 2021

Antibody binding-site conserved across COVID-19 virus variants: The structural revelation could have implications as a therapeutic target in all SARS-CoV-2 variants April 9th, 2021

Possible Futures

Wearable sensors that detect gas leaks April 19th, 2021

New nanoscale device for spin technology: Spin waves could unlock the next generation of computer technology, a new component allows physicists to control them April 16th, 2021

New tech builds ultralow-loss integrated photonic circuits April 16th, 2021

Oregon scientists create mechanism to precisely control soundwaves in metamaterials: Theoretical modeling shows that designer materials incorporating drum-like membranes allow precise stoppage and reversal of sound pulses April 16th, 2021

Nanomedicine

Arrowhead Pharmaceuticals to Webcast Fiscal 2021 Second Quarter Results April 16th, 2021

Arrowhead Pharmaceuticals to Webcast Fiscal 2021 Second Quarter Results April 16th, 2021

French & Swiss Scientists Demonstrate ‘All-in-One’ Technique that Could Accelerate Phage-Therapy Diagnosis: Lensless Imaging System Affirms Phage Therapy’s Value in Treating Serious Infection, Tracks Phage Resistance and Could Easily Be Implemented in Compact Devices at Phage Lab April 13th, 2021

Antibody binding-site conserved across COVID-19 virus variants: The structural revelation could have implications as a therapeutic target in all SARS-CoV-2 variants April 9th, 2021

Nanoelectronics

New tech builds ultralow-loss integrated photonic circuits April 16th, 2021

Graphene: Everything under control: Research team demonstrates control mechanism for quantum material April 9th, 2021

Energy transmission by gold nanoparticles coupled to DNA structures April 9th, 2021

Oxygen-promoted synthesis of armchair graphene nanoribbons on Cu(111) April 2nd, 2021

Discoveries

New nanoscale device for spin technology: Spin waves could unlock the next generation of computer technology, a new component allows physicists to control them April 16th, 2021

New tech builds ultralow-loss integrated photonic circuits April 16th, 2021

Oregon scientists create mechanism to precisely control soundwaves in metamaterials: Theoretical modeling shows that designer materials incorporating drum-like membranes allow precise stoppage and reversal of sound pulses April 16th, 2021

FSU engineers improve performance of high-temperature superconductor wires April 16th, 2021

Announcements

Wearable sensors that detect gas leaks April 19th, 2021

JEOL USA Welcomes New Managing Director, Hidetaka Sawada April 19th, 2021

FSU engineers improve performance of high-temperature superconductor wires April 16th, 2021

Arrowhead Pharmaceuticals to Webcast Fiscal 2021 Second Quarter Results April 16th, 2021

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Wearable sensors that detect gas leaks April 19th, 2021

New nanoscale device for spin technology: Spin waves could unlock the next generation of computer technology, a new component allows physicists to control them April 16th, 2021

New tech builds ultralow-loss integrated photonic circuits April 16th, 2021

Oregon scientists create mechanism to precisely control soundwaves in metamaterials: Theoretical modeling shows that designer materials incorporating drum-like membranes allow precise stoppage and reversal of sound pulses April 16th, 2021

Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records

Controlling bubble formation on electrodes: Study finds the wettability of porous electrode surfaces is key to making efficient water-splitting or carbon-capturing systems March 26th, 2021

Building tough 3D nanomaterials with DNA: Columbia Engineers use DNA nanotechnology to create highly resilient synthetic nanoparticle-based materials that can be processed through conventional nanofabrication methods March 19th, 2021

Teamwork makes light shine ever brighter: Combined energy sources return a burst of photons from plasmonic gold nanogaps March 18th, 2021

Nanotech scientists create world's smallest origami bird March 17th, 2021

Photonics/Optics/Lasers

New tech builds ultralow-loss integrated photonic circuits April 16th, 2021

Microscope that detects individual viruses could power rapid diagnostics March 19th, 2021

Teamwork makes light shine ever brighter: Combined energy sources return a burst of photons from plasmonic gold nanogaps March 18th, 2021

Compression or strain - the material expands always the same March 10th, 2021

Research partnerships

TPU scientists offer new plasmon energy-based method to remove CO2 from atmosphere March 19th, 2021

Quantum quirk yields giant magnetic effect, where none should exist: Study opens window into the landscape of extreme topological matter March 1st, 2021

Researchers improve efficiency of next-generation solar cell material: Reducing internal losses could pave the way to low-cost perovskite-based photovoltaics that match silicon cells’ output February 26th, 2021

CEA-Leti & Dolphin Design Report FD-SOI Breakthrough that Boosts Operating Frequency by 450% and Reduces Power Consumption by 30%: Joint Paper Presented at ISSCC 2021 Shows How New Adaptive Back-Biasing Technique Overcomes Integration Limits in Chip Design Flows February 23rd, 2021

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project