Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Pathways toward realizing the promise of all-solid-state batteries

Illustration of various recycling methods with reference to direct battery recycling method proposed in solid state batteries. Image courtesy of Nature Nanotechnology
Illustration of various recycling methods with reference to direct battery recycling method proposed in solid state batteries. Image courtesy of Nature Nanotechnology

Abstract:
When it comes to batteries, there are always areas for improvement: the race is on to develop batteries that are cheaper, safer, longer lasting, more energy dense, and easily recyclable.

Pathways toward realizing the promise of all-solid-state batteries

San Diego, CA | Posted on March 13th, 2020

In a review article published in the March 2020 issue of Nature Nanotechnology, nanoengineers at the University of California San Diego offer a research roadmap that includes four challenges that need to be addressed in order to advance a promising class of batteries--all-solid-state batteries--to commercialization. This article summarizes the team's work to tackle these challenges over the past three years, which have been reported in several peer-reviewed articles published in various journals.

Unlike today's rechargeable lithium ion batteries, which contain liquid electrolytes that are often flammable, batteries with solid electrolytes offer the possibility of greater safety, in addition to a whole range of benefits including higher energy density.

In the Nature Nanotechnology review article, the researchers focus on inorganic solid electrolytes such as ceramic oxides or sulfide glasses. Inorganic solid electrolytes are a relatively new class of solid electrolytes for all-solid-state batteries (in contrast to organic solid electrolytes which are more extensively researched.)

Roadmap: inorganic electrolytes for all-solid-state batteries

The following is an outline of the roadmap that the researchers describe in their review article:

1) Creating stable solid electrolyte chemical interfaces
2) New tools for in operando diagnosis and characterization
3) Scalable and cost-effective manufacturability
4) Batteries designed for recyclability

"It's critical that we step back and think about how to address these challenges simultaneously because they are all interrelated," said Shirley Meng, a nanoengineering professor at the UC San Diego Jacobs School of Engineering. "If we are going to make good on the promise of all-solid-state batteries, we must find solutions that address all these challenges at the same time."

As director of the UC San Diego Sustainable Power and Energy Center and director of the UC San Diego Institute for Materials Discovery and Design, Meng is a key member of a cluster of researchers at the forefront of all solid-state battery research and development at UC San Diego.

Creating stable solid electrolyte chemical interfaces

Solid-state electrolytes have come a long way since their early days, when the first electrolytes discovered had exhibited conductivity values too low for practical applications. Today's advanced solid-state electrolytes show conductivities exceeding even those of conventional liquid electrolytes used in today's batteries (greater than 10 mS cm-1). Ionic conductivity refers to how fast lithium ions can move within the electrolyte.

Unfortunately, most highly conductive solid electrolytes reported are often electrochemically unstable and face problems when applied against electrode materials used in batteries.

"At this point, we should shift our focus away from chasing higher ionic conductivity. Instead, we should focus on stability between solid state electrolytes and electrodes," said Meng.

If ionic conductivity is analogous to how fast a car can be driven, then interface stability refers to how hard it is to get through rush hour traffic. It doesn't matter how fast your car can go if you're stuck in traffic on your way to work.

Researchers at UC San Diego recently addressed this interface stability bottleneck, demonstrating how to stabilize the electrode-electrolyte interface and improve battery performance using solid electrolytes with moderate ionic conductivities but exhibit stable interfaces.

Related interface stability papers from UC San Diego:

Revealing Nanoscale Solid-Solid Interfacial Phenomena for Long-Life and High-Energy All-Solid-State Batteries in ACS Applied Materials and Interfaces
Elucidating Reversible Electrochemical Redox of Li6PS5Cl Solid Electrolyte in ACS Energy Letters
New tools for in operando diagnosis and characterization

Why do batteries fail? Why does short circuit occur? The process of understanding what goes on inside a battery requires characterization down to the nanoscale, ideally in real time. For all-solid-state batteries, this is immensely challenging.

Battery characterization typically relies on using probes such as X-rays, or electron or optical microscopy. In commercial lithium ion batteries, the liquid electrolytes used are transparent, allowing observation of various phenomena at the respective electrodes. In some cases, this liquid can also be washed away to provide a cleaner surface for higher resolution characterization.

"We have a much easier time observing today's lithium ion batteries. But in all-solid-state batteries, everything is solid or buried. If you try the same techniques for all-solid-state batteries, it's like trying to see through a brick wall," said Darren H. S. Tan, a nanoengineering Ph.D. candidate at the UC San Diego Jacobs School of Engineering.

In addition, solid electrolytes and lithium metal used in solid-state batteries can be sensitive to electron beam damage. This means that standard electron microscopy techniques used to study batteries would damage the materials of interest before they can be observed and characterized.

One way UC San Diego researchers are overcoming these challenges is using cryogenic methods to keep battery materials cool, mitigating their decomposition under the electron microscope probe.

Another tool used to overcome the obstacles of characterizing solid electrolyte interfaces is X-ray tomography. This is similar to what humans undergo during their health checkups. The approach was used in a recent paper reporting on the observation--without opening or disrupting the battery itself--of lithium dendrites buried within the solid electrolyte.

Related characterization papers from UC San Diego:

Cryogenic Focused Ion Beam Characterization of Lithium Metal Anodes in ACS Energy Letters
Stack Pressure Considerations for Room?Temperature All?Solid?State Lithium Metal Batteries in Advanced Energy Materials
Scalable and cost-effective manufacturability

Breakthroughs in battery research often don't mean much if they are not scalable. This includes advances for all-solid-state batteries. If this class of batteries is to enter the market within the next few years, the battery community needs ways to manufacture and handle their sensitive component materials cost effectively and at large scales.

Over the past few decades, researchers have developed--in the lab--various solid electrolyte materials that exhibit chemical properties that are ideal for batteries. Unfortunately, many of these promising materials are either too costly or too difficult to scale up for high-volume manufacturing. For example, many become highly brittle when made thin enough for roll-to-roll manufacturing, which demands thicknesses of under 30 micrometers.

Additionally, methods to produce solid electrolytes at larger scales are not well established. For instance, most synthesis protocols require multiple energetic processes that include multiple milling, thermal annealing and solution processing steps.

To overcome such limitations, researchers at UC San Diego are merging multiple fields of expertise. They are combining ceramics used in traditional material sciences with polymers used in organic chemistry to develop flexible and stable solid electrolytes that are compatible with scalable manufacturing processes. To address problems of material synthesis, the team also reports how solid electrolyte materials can be scalably produced using single-step fabrication without the need for additional annealing steps.

Related scalable manufacturing papers from UC San Diego:

"Enabling Thin and Flexible Solid-State Composite Electrolytes by the Scalable Solution Process" in ACS Applied Energy Materials
"Single-step synthesis of highly conductive Na3PS4 solid electrolyte for sodium all solid-state batteries" in Journal of Power Sources
Batteries designed for recyclability

Spent batteries contain valuable and limited-abundance materials such as lithium and cobalt that can be reused.

When they reach the end of their life cycles, these batteries need to go somewhere, or else they will simply be accumulated over time as waste.

Today's recycling methods, however, are often expensive, energy and time intensive, and include toxic chemicals for processing. Moreover, these methods only recover a small fraction of the battery materials due to low rates of recycling of electrolytes, lithium salts, separator, additives and packaging materials. In large part, this is because today's batteries have not been designed with cost-effective recyclability in mind from the start.

UC San Diego researchers are at the forefront of efforts to design reusability and recyclability into tomorrow's all-solid-state batteries.

"Cost-effective reusability and recyclability must be baked into the future advances that are needed to develop all-solid-state batteries that provide high energy densities of 500 watt-hours per kg or better," said UC San Diego nanoengineering professor Zheng Chen. "It's critical that we don't make the same recyclability mistakes that were made with lithium ion batteries."

Batteries also need to be designed with their full life-cycle in mind. This means designing batteries that are meant to remain in use well after they drop below the 60 to 80 percent of their original capacity that often marks the end of the useful life of a battery. This can be done by exploring secondary uses for batteries such as stationary storage or for emergency power, extending their lifespans before they finally hit the recycling centers.

All-solid-state batteries with organic electrolytes offer great promise as a future battery technology that will deliver high energy density, safety, long life times and recyclability. But turning these possibilities into realities will require strategic research efforts that consider how the remaining challenges, including recyclability, are interrelated.

####

For more information, please click here

Contacts:
Daniel Kane

858-534-3262

@UCSanDiego

Copyright © University of California, San Diego

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Paper title

Related News Press

News and information

Researchers develop artificial building blocks of life March 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Two-dimensional bimetallic selenium-containing metal-organic frameworks and their calcinated derivatives as electrocatalysts for overall water splitting March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

Govt.-Legislation/Regulation/Funding/Policy

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Optically trapped quantum droplets of light can bind together to form macroscopic complexes March 8th, 2024

Possible Futures

Two-dimensional bimetallic selenium-containing metal-organic frameworks and their calcinated derivatives as electrocatalysts for overall water splitting March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Discoveries

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

High-tech 'paint' could spare patients repeated surgeries March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Materials/Metamaterials/Magnetoresistance

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Focused ion beam technology: A single tool for a wide range of applications January 12th, 2024

Catalytic combo converts CO2 to solid carbon nanofibers: Tandem electrocatalytic-thermocatalytic conversion could help offset emissions of potent greenhouse gas by locking carbon away in a useful material January 12th, 2024

Announcements

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Researchers develop artificial building blocks of life March 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Automotive/Transportation

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

New designs for solid-state electrolytes may soon revolutionize the battery industry: Scientists achieve monumental improvements in lithium-metal-chloride solid-state electrolytes November 3rd, 2023

Previously unknown pathway to batteries with high energy, low cost and long life: Newly discovered reaction mechanism overcomes rapid performance decline in lithium-sulfur batteries September 8th, 2023

Tests find no free-standing nanotubes released from tire tread wear September 8th, 2023

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Two-dimensional bimetallic selenium-containing metal-organic frameworks and their calcinated derivatives as electrocatalysts for overall water splitting March 8th, 2024

Discovery of new Li ion conductor unlocks new direction for sustainable batteries: University of Liverpool researchers have discovered a new solid material that rapidly conducts lithium ions February 16th, 2024

A battery’s hopping ions remember where they’ve been: Seen in atomic detail, the seemingly smooth flow of ions through a battery’s electrolyte is surprisingly complicated February 16th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project