Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International

Wikipedia Affiliate Button

Home > Press > New catalyst provides boost to next-generation EV batteries

Professor Guntae Kim (right) and Arim Seong (left) in the School of Energy and Chemical Engineering at UNIST.

CREDIT
UNIST
Professor Guntae Kim (right) and Arim Seong (left) in the School of Energy and Chemical Engineering at UNIST. CREDIT UNIST

Abstract:
Metal-Air Batteries (MABs), which use oxygen from ambient air as recourses to store and convert energy, have received considerable attention for their potential use in electric vehicles (EVs) owing to their large storage capacity, lightweight, and affordability. A research team, affiliated with UNIST has announced that a new catalyst that could boost MAB performance, such as discharge and charge efficiency, was developed recently.

New catalyst provides boost to next-generation EV batteries

Ulsan, Korea | Posted on March 13th, 2020

A research team, led by Professor Guntae Kim in the School of Energy and Chemical Engineering at UNIST, has unveiled a new composite catalyst that could efficiently enhance the charg-discharge performances when applied to MABs. It is a form of very thin layer of metal oxide films deposited on a surface of perovskite catalysts, and thus the interface naturally formed between the two catalysts enhances the overall performance and stability of the new catalyst.

Metal-air batteries (MABs), in which oxygen from the atmosphere reacts with metals to generate electricity, are one of the lightest and most compact types of batteries. They are equipped with anodes made up of pure metals (i.e. Lithium, Zinc, Magnesium, and Aluminum) and an air cathode that is connected to an inexhaustible source of air. Due to their high theoretical energy density, MABs have been considered a strong cadidate for the next-generation electric vehicles. The currently existing MABs use rare and expensive metal catalysts for their air electrodes, such as platinum (Pt). This has hindered its further commercialization into the marketplace. As an alternative, perovskite catalysts that exhibit excellent catalyic performance has been proposed, yet there exists low activation barriers.

Professor Kim has solved this issue with a new composite catalyst combining two types of catalysts, each of which showed excellent performance in charge and discharge reactions. The metal catalyst (cobalt oxide), which performs well in charging, is deposited on a very thin layer on top of the manganese-based perovskite catalyst (LSM), which performs well in discharge. As a result, the synergistic effect of the two catalysts became optimal when the deposition process was repeated 20 times.

"During the repeated deposition and oxidation cycles of atomic layer deposition (ALD) process, the Mn cations diffuse into Co3O4 from LSM, and therefore, the LSM-20-Co catalyst is composed of LSM encapsulated with the self-reconstructedspinel interlayer (Co3O4/MnCo32O4/LSM)," says Arim Seong (Combined M.S/Ph.D. of Energy and Chemical Engineering, UNIST), the first author of the study. "And this has enhanced the catalytic activitiy of the hybrid catalyst, LSM-20-Co, leading to superior bifunctional electrochemical performances for the ORR and the OER in alkaline solutions."

"To the best of our knowledge, this is the first study to investigate the self-reconstructed interlayer induced by the in-situ cation diffusion during ALD process for designing an efficient and stable bifunctional catalyst for alkaline zinc-air batteries," according to the research team.

"Our findings provide the rational design strategy of self-reconstructed interlayer for efficient electro-catalyst," says Professor Kim. "Therefore, this work can provide insight into the rational design strategy of metal oxide with perovskite materials."

###

This research has been carried out in collaboration with Professor Raymond J. Gorte (University of Pennsylvania), Professor John M. Vohs (University of Pennsylvania), and Professor Hu Young Jeong (UNIST). The findings of this research have been published in the online version of Nano Energy on February 3, 2020. This work has been supported by Global Ph.D. Fellowship Program of NRF Grant funded by the Korean Ministry of Science and ICT (MSIT). Also, it has been supported by the Korea Institute of Energy Technology Evaluation and Planning (KETEP) and the Korean Ministry of Trade, Industry & Energy (MOTIE).

####

For more information, please click here

Contacts:
JooHyeon Heo

82-522-171-223

Copyright © UNIST

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

RELATED JOURNAL ARTICLE:

Related News Press

News and information

When Dirac meets frustrated magnetism August 3rd, 2020

New printing process advances 3D capabilities: Technology aims to improve quality of products used in business, industry and at home July 31st, 2020

TU Graz researchers synthesize nanoparticles tailored for special applications July 31st, 2020

Scientists discover new class of semiconducting entropy-stabilized materials July 31st, 2020

Chemistry

Way, shape and form: Synthesis conditions define the nanostructure of manganese dioxide July 31st, 2020

Govt.-Legislation/Regulation/Funding/Policy

Physicists find misaligned carbon sheets yield unparalleled properties July 31st, 2020

Scientists discover new class of semiconducting entropy-stabilized materials July 31st, 2020

Nanoreactor strategy generates superior supported bimetallic catalysts July 31st, 2020

Study: Mapping crystal shapes could fast-track 2D materials: Experts call for global effort to clear hurdles to mass production July 27th, 2020

Possible Futures

Physicists find misaligned carbon sheets yield unparalleled properties July 31st, 2020

Way, shape and form: Synthesis conditions define the nanostructure of manganese dioxide July 31st, 2020

New printing process advances 3D capabilities: Technology aims to improve quality of products used in business, industry and at home July 31st, 2020

Scientists discover new class of semiconducting entropy-stabilized materials July 31st, 2020

Materials/Metamaterials

Way, shape and form: Synthesis conditions define the nanostructure of manganese dioxide July 31st, 2020

TU Graz researchers synthesize nanoparticles tailored for special applications July 31st, 2020

Study: Mapping crystal shapes could fast-track 2D materials: Experts call for global effort to clear hurdles to mass production July 27th, 2020

Discovery of disordered nanolayers in intermetallic alloys: Resolving alloys' strength-ductility trade-off and thermal instability July 24th, 2020

Announcements

When Dirac meets frustrated magnetism August 3rd, 2020

New printing process advances 3D capabilities: Technology aims to improve quality of products used in business, industry and at home July 31st, 2020

TU Graz researchers synthesize nanoparticles tailored for special applications July 31st, 2020

Scientists discover new class of semiconducting entropy-stabilized materials July 31st, 2020

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

When Dirac meets frustrated magnetism August 3rd, 2020

Way, shape and form: Synthesis conditions define the nanostructure of manganese dioxide July 31st, 2020

New printing process advances 3D capabilities: Technology aims to improve quality of products used in business, industry and at home July 31st, 2020

TU Graz researchers synthesize nanoparticles tailored for special applications July 31st, 2020

Automotive/Transportation

New cobalt-free lithium-ion battery reduces costs without sacrificing performance July 17th, 2020

First measurement of electron energy distributions, could enable sustainable energy technologies June 5th, 2020

Oil & gas and automotive sectors will benefit from durable polymers with graphene nanotubes May 14th, 2020

Wiring the quantum computer of the future: A novel simple build with existing technology: The basic units of a quantum computer can be rearranged in 2D to solve typical design and operation challenges April 24th, 2020

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

Russian scientists identified energy storage mechanism of sodium-ion battery anode July 24th, 2020

New cobalt-free lithium-ion battery reduces costs without sacrificing performance July 17th, 2020

Biosynthetic sustainable hierarchical solar steam generator July 10th, 2020

A path to new nanofluidic devices applying spintronics technology: Substantial increase in the energy conversion efficiency of hydrodynamic power generation via spin currents July 3rd, 2020

Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records

Study: Mapping crystal shapes could fast-track 2D materials: Experts call for global effort to clear hurdles to mass production July 27th, 2020

'Blinking" crystals may convert CO2 into fuels: Unusual nanoparticles could benefit the quest to build a quantum computer July 17th, 2020

Membrane technology could cut emissions and energy use in oil refining July 17th, 2020

Purifying water with the help of wood, bacteria and the sun July 10th, 2020

Research partnerships

Discovery of disordered nanolayers in intermetallic alloys: Resolving alloys' strength-ductility trade-off and thermal instability July 24th, 2020

Russian scientists identified energy storage mechanism of sodium-ion battery anode July 24th, 2020

HORIBA Medical and CEA-Leti Strengthen Their Partnership to Develop Tomorrow’s Diagnostics at the Point of Care July 21st, 2020

'Blinking" crystals may convert CO2 into fuels: Unusual nanoparticles could benefit the quest to build a quantum computer July 17th, 2020

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project